UHPLC-Q-TOF-MS/MS 法分析抗痨胶囊化学成分

滟^{1,2,3}, 叶开文¹, 李 冰¹, 侯小涛^{1,2,3*}

(1. 广西中医药大学, 广西中药药效研究重点实验室, 广西 南宁 530200; 2. 广西中医药大学农作物废弃 物协同创新中心,广西 南宁 530200; 3. 广西中医药大学,广西中医湿病方药理论与转化重点实验室, 广西 南宁 530200)

摘要:目的 建立 UHPLC-Q-TOF-MS/MS 法分析抗痨胶囊化学成分。方法 分析采用菲罗门 Kinetex C₁₈色谱柱 (2.1 mm×100 mm, 1.7 μm); 流动相乙腈-0.1%甲酸,梯度洗脱;体积流量 0.4 mL/min;柱温 40 ℃;电喷雾离子源 (ESI);正负离子模式。根据采集的色谱峰同位素丰度及一级、二级质谱,计算高分辨精确分子质量并推测其裂解方 式,结合文献解析化合物结构。结果 共鉴定出 52 种化学成分,主要为岩白菜素类和葡萄糖氧基苄基 2-异丁基苹果 酸酯类,还包括生物碱、酚类、黄酮类。结论 抗痨胶囊止咳成分主要为岩白菜素类、百部生物碱类化合物,而葡萄 糖氧基苄基 2-异丁基苹果酸酯类为主要止血物质。抗痨胶囊可能不是通过直接抗 Mycobacterium tuberculosis H37Rv 活性 治疗浸润性肺结核,而是通过免疫调节活性起到辅助作用。

关键词: 抗痨胶囊; 化学成分; UHPLC-Q-TOF-MS/MS

中图分类号: R284.1 文献标志码: A 文章编号: 1001-1528(2024)10-3338-10

doi:10.3969/j.issn.1001-1528.2024.10.025

Analysis of chemical constituents in Kanglao Capsules by UHPLC-Q-TOF-MS/MS

XIE Yan^{1,2,3}, YE Kai-wen¹, LI Bing¹, HOU Xiao-tao^{1,2,3}*

(1. Guangxi Key Laboratory for Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; 2. Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; 3. Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530200, China)

KEY WORDS: Kanglao Capsules; chemical constituents; UHPLC-Q-TOF-MS/MS

抗痨胶囊由矮地茶、百部、穿破石、五指毛 桃、白及、桑白皮组成, 在临床上主要治疗肺虚久 咳、痰中带血,除白及外其余5味中药均可用于咳 嗽[1-3]。其中,矮地茶具有化痰止咳的功效,治疗 新久咳嗽、喘满痰多;百部具有润肺、止咳、祛痰 的功效,治疗新久咳嗽、肺雳咳嗽、顿咳;穿破石 具有止咳化痰的功效,治疗肺结核; 五指毛桃具有 健脾益气的功效,治疗脾虚浮肿、食少无力、肺痨 咳嗽;桑白皮具有泻肺平喘、利水消肿的功效,治 疗肺热喘咳: 白及具有收敛止血、消肿生肌的功 效,治疗咯血、吐血。虽然有关矮地茶[4]、百 部[5]、穿破石[6-7]、五指毛桃[8-9]、白及[10]、桑白 皮[11]化学成分的研究已多有报道,但目前抗痨胶 囊的质量控制标准仅有显色鉴别, 无清晰的指标性 成分。因此,本研究应用 UHPLC-Q-TOF-MS/MS 法分析抗痨胶囊甲醇提取物,通过文献对比二级质 谱信息鉴别主要成分, 为今后制定其完善的质量标 准及推测可能的药效物质基础提供依据。

收稿日期: 2023-05-23

网络出版日期: 2023-10-25

基金项目:广西省青年基金 (2020GXNSFBA297056);广西省广西中药药效研究重点实验室运行补助项目 (20-065-38)

作者简介:谢 滟 (1984—),女,博士,讲师,从事中药药效物质基础研究。Tel: (0771) 4733831, E-mail: y2y2020@126.com

^{*}通信作者: 侯小涛 (1969—), 女, 博士, 教授, 从事中药药效物质基础及其质量控制研究。E-mail: xthou@ 126.com

网络出版地址: http://kns.cnki.net/kcms/detail/31.1368. R. 20231024.1512.004. html.

1 材料

仪器 ExionLC 超高效液相色谱仪、X500R 高分辨质谱仪 (美国 AB Sciex 公司); EL204 电子 天平 (瑞士梅特勒-托利多公司); KQ-500DE 数控 超声波清洗器 (昆山市超声仪器有限公司); Purelab Classic UV 超纯水仪 (英国 ELGA 公司)。 抗痨胶囊购于桂林三金药业股 1.2 试剂与药物 份有限公司, 批号 190801。矮地茶、百部、穿破 石、五指毛桃、白及、桑白皮饮片均购于广西仙茱 中药科技有限公司, 批号 20220901、20220603、 20221101、20230101、20220901、20220401,经广 西中医药大学廖月葵高级实验师鉴定为正品。绿原 酸、隐绿原酸、新绿原酸、岩白菜素、去甲基岩白 菜素、对叶百部碱、dactylorhin A、1, 4-二「4-(葡萄糖氧) 苄基] -2-异丁基苹果酸酯对照品均购 于成都普思生物科技有限公司, 批号 010694、 001110, 000974, 010520, 220228-05, 230214-02, 011099、011098。乙腈、甲酸均为色谱纯,购于美 国 Thermo Fisher Scientific 公司: 甲醇为分析纯, 购于成都市科隆化学品有限公司: 水为超纯水。

2 方法

- 2.1 色谱条件 菲罗门 Kinetex C_{18} 色谱柱(2.1 mm×100 mm, 1.7 μm); 流动相乙腈(A)-0.1% 甲酸(B), 梯度洗脱(0~12 min, 5%~10% A; 12~41 min, 10%~35% A; 41~45 min, 35%~43% A); 体积流量 0.4 mL/min; 柱温 40 ℃; 进样量 3 μL。
- 2.2 质谱条件 电喷雾离子源 (ESI); 正负离子扫描; IDA 模式; 毛细管电压 5 500、 $^{-4}$ 500 V; 辅助气温度 600 ℃; 辅助气 (N_2) 55 psi (1 psi = 6.895 kPa); 气帘气 35 psi; 碰撞气 (N_2) 7 psi; 去簇电压 80、 $^{-80}$ V; TOF-MS、TOF-MS/MS 碰撞能量 10、35 V; 扫描范围 $^{m/z}$ 100~1 500。IDA 设置响应值超过 100 cps 的 10 个最高峰进行二级质谱扫描,开启动态背景扣除。
- 2.3 对照品溶液制备 精密称取各对照品适量, 甲醇制成对叶百部碱质量浓度为 0.01 mg/mL, 绿原酸、隐绿原酸、新绿原酸、岩白菜素、去甲基岩白菜素、dactylorhin A、1, 4-二 [4-(葡萄糖氧)苄基]-2-异丁基苹果酸酯质量浓度均为 0.024 mg/mL的溶液,即得。
- 2.4 供试品溶液制备 取本品内容物粉末约 0.5 g, 精密称定, 置于具塞锥形瓶中, 加入5 mL

50% 甲醇, 称定质量, 超声提取 20 min, 放冷至室 温,50%甲醇补足减失的质量,过滤,取上清液, 0.22 μm 微孔滤膜过滤,即得。分别称取矮地茶、 百部、穿破石、五指毛桃、白及、桑白皮饮片 100 g,加入1L水煎煮30 min,过滤,浓缩,浓缩液 冷冻干燥,分别精密称取 0.5 g,置于具塞锥形瓶 中,加入15 mL50%甲醇,称定质量,超声提取 20 min, 放冷至室温, 50% 甲醇补足减失的质量, 过滤,取上清液,0.22 µm 微孔滤膜过滤,即得。 2.5 数据分析 查阅国内外相关文献,整理抗痨 胶囊中 6 味中药所含的化学成分信息。根据 UHPLC-Q-TOF-MS/MS 获得色谱峰的同位素丰度及 一级、二级质谱、利用 SCIEX OS 软件中 Explorer 模块的 Formula Finder 计算高分辨精确分子质量, 快速推测各色谱峰对应化合物的分子式,依据 MS/ MS 碎片信息推测其裂解方式,解析化合物结构。

3 结果

取 "2.4" 项下供试品溶液适量,在 "2.1" "2.2" 项条件下进样测定,发现在正负离子模式下各成分分离、离子化程度均较好,共鉴定出 52 种成分,具体见表 1,总离子流图见图 1。

3.1 苹果酸酯糖苷类及其衍生物 苹果酸酯糖苷 由苹果酸、糖基、苄基组成,在 ESI-MS 光谱中发 现脱质子分子离子峰「M-H]。在苹果酸酯糖苷 的质谱中, 通常观察到 H₂O (18 Da)、COOH (45 Da)、 $C_6H_{10}O_5$ (162 Da)、 $C_{13}H_{17}O_7$ (285 Da) 碎 片的丢失。以 dactylorhin A 为例^[38] (图 2), 「M-H] $^{-}$ 分子离子峰为 m/z 887. 315 0, MS^{2} 图谱中碎片 离子峰 m/z 887. 315 0 通过中性丢失 $C_6H_{10}O_5$ 和 H₂O 形成碎片离子峰 m/z 707. 252 6「M-H-C₆H₁₀ O₅-H₂O]⁻; 碎片离子峰 m/z 887.315 0 丢失 glucopyranosyloxy-benzyl moiety 产生 m/z 619. 221 6 [M-H-C₁₃H₁₆O₆], 表明 glucopyranosyloxy-benzyl moiety 极易丢失碎片离子峰 m/z 619. 221 6 通过 C₂-OH 位置中性丢失 glycose moiety 形成碎片离子峰 m/z 439. 158 7 $\left[M-H-C_{13}H_{16}O_{6}-C_{6}H_{10}O_{5}-H_{2}O \right]^{-}$ 碎片离子峰 m/z 439.158 7 进一步丢失 glucopyranosyloxy-benzyl moiety 产生 m/z 171.066 3 「M-H-C₁₃H₁₆O₆-C₆H₁₀O₅-H₂O-C₁₃H₁₆O₆] 。 碎片 离子峰 m/z 153.055 2 是通过 m/z 171.066 3 丢失 H,0 衍生而来的,通过与相关文献比对,鉴定为 dactylorhin A。基于类似的裂解方式,根据分子式、 MS² 片段和相关文献,确定了其他 12 个化合物,

表 1 抗痨胶囊提取物中化学成分

extract
Capsules
Kanglao
Ξ.
constituents
ical
Chemic
1.

							Tab. 1 Chemical constituents in Kanglao Capsules extract	apsules extract			
序号	保留时间/ min	/ 实测值 m/z	理论值 m/z	误差 (×10 ⁻⁶)	分子式	离子模式	碎片峰 m/z	名称	来源 ***	文献	米型
-	0.997	331. 102 4	331. 103 5	-3.2	C ₁₃ H ₁₈ O ₇	M+FA-H]	[M+FA-H] ⁻ 123.045 1(100%), 105.034 7	gastrodin	白及	[12]	苹果酸酯糖苷
15	7.119	189.0765	189.0768	-1.8		[M-H]	189. 076 7, 145. 087 2, 129. 055 4 (100%), 127. 076 4	isobutylmalic acid	白及	_	及其衍生物
27	14.306	727. 206 7	727. 209 1	-3.3	$C_{32}H_{40}O_{19}$	_ [W-H] _	727.206 6 (100%), 441.103 6, 423.093 0, 397.113 7, 379.104 5, 263.077 5, 217.051 3, 161.045 7	parishin B or C	穿破石	I	
31	17.467	619, 221 9	619, 224 4	-4.0	$C_{26}H_{38}O_{14}$	M+FA-H]	C ₂₆ H ₃₈ O ₁₄ [M+FA-H] - 439, 158 9, 171. 065 7, 153. 054 9 (100%)	dactylorhin A derivatives	白及	I	
32	18.626	697. 233 2	697. 234 9	-2.5	$C_{32}H_{42}O_{17}$	[M-H]	429. 139 8 (100%), 261. 098 2, 221. 067 0, 161. 045 9	bis { } { L [(2S, 3R, 4S, 5S, 6R)-3, 4, 5-trihydroxy-6- (hydroxymethyl) oxan-2-yl] oxyphenyl methyl 3-hydroxy-3-methylpentanedioate	穿破石	[14]	
33	20. 221	915.350 1	915.350 3	-0.3	$C_{42}H_{60}O_{22}$	_ [W-H] _	457.169 3 (100%), 373.111 3, 285.097 4, 211.058 2, 153.055 6	1,4二[4(葡萄糖氧)苄基]-2-异丁基苹果酸酯衍生物	白及	I	
38	20.960	937.3303	937.334 7	7.4-	C ₄₃ H ₅₆ O ₂₀	$C_{43}H_{56}O_{20}$ [M+FA-H] ⁻ 937.329 3, 211.0	937.3297,479.1535,457.1707 ($100%$) , 373.112 0, 285.098 3, 211.059 1, 153.056 1	7,479.153 5,457.170 7 (100%),373.112 0,285.098 1,4二[4(葡萄糖氧)苄基]-2-异丁基苹果酸酯衍生物 189 1,153.056 1	白及	I	
88	22. 634	887.3150	887.319 0	-3.7	$C_{40}H_{56}O_{22}$	_ [W-H]	707.252 6, 619.221 6 (100%), 439.158 7, 179.055 8, 153.055 2	8, dactylorhin A^*	自及	[15]	
4 5	26.325	725. 262 6	725. 266 2	-4.6	$C_{34}H_{46}O_{17}$	- [M-H]	8 (100%), 285.097 0, 153.055 1		白及	[16]	
4	27.4	929. 320 3	929. 329 0	2. S	C ₄₂ H ₅₈ U ₂₃		601.231 6 (100%), 481.1/3 9, 439.139 1, 221.000 /, 153.055 7		X II		
43	30.694	971. 335 8	971. 340 2	-4.5	$C_{44}H_{60}O_{24}$	[M-H] -	703. 242 3(100%), 661. 233 6, 481. 170 8, 439. 159 4, 153. 055 8	gymoside VII	白及	[17]	
45	35.449	1 013.349 0	1 013.349 0 1 013.351 0	-2.2	$C_{46}H_{62}O_{25}$	_ [M-H] _	745.255 9 (100%), 703.245 2, 481.172 2, 439.160 7, acetyl-gymnoside VII 153.055 7	acetyl-gynnoside VIII	白及		
4	37.575	1 017. 357 0	1 017. 357 0 1 017. 361 0	-3.7	$C_{49}H_{62}O_{23}$	_ [M-H]	749. 263 3(100%), 439. 159 8, 153. 055 9	gymnoside V	自及	[12]	
4 4	39.389 30.963	1 059. 367 0	1 059.367 0 1 059.372 0	6. 6. 4. 8. 8	$C_{51}H_{64}O_{24}$	_ [M-M]	791. 273 9 (100%), 439. 160 4, 153. 056 1 791. 776 1 (100%) 661 235 5 569 202 8 439 160 9	gymnoside IX or gymnoside IX isomer ovrmoside IX or ovrmoside IX isomer	II II X X	[17-18]	
	39, 903	1 039, 300 0	1 039. 372 0	0.5.	∪51⊓64 ^O 24	[H-M]	191.270 1 (10070), 001.253 3, 303.202 0, 439.100 9, 153.056 2	gynnoside IA of gynnoside IA isomer	X I	[1/-10]	
64	43. 321	1 059.369 0	1 059. 369 0 1 059. 372 0	-0.3	$C_{51}H_{64}O_{24}$	_ [M-H] _	791.276 2 (100%), 661.235 6, 569.203 3, 439.160 9, gymnoside IX or gymnoside IX isomer 153.056 4	gymnoside IX or gymnoside IX isomer	白及	[17-18]	
2	1.488	313.0559	313.056 5	-1.9	$C_{13}H_{14}O_{9}$	[M-H]	313.055 9 (100%), 193.014 5	去甲岩白菜素*	矮地茶	[19]	香豆素类
5 0	2.711 3.744	297.061 0 327.070 8	327.061 6	-2.0 -4.1	$C_{13}H_{14}O_{8}$ $C_{14}H_{12}O_{8}$	_ [W-H]	297. 061 1, 219. 029 7, 177. 019 1 (100%), 133. 029 7 312. 047 6, 224 016 0, 192 005 7(100%)	demethoxybergenin 岩白莖麦。	矮地茶 练岩茶	[20-21]	
11	4. 652	489. 124 3	489. 125 0	-1.4	$C_{20}H_{26}O_{14}$	_ [W-H]	489. 124 4, 327. 072 3, 312. 047 5, 249. 041 6, 207. 030 1(100%), 192. 006 3		矮地茶	[21]	
53	16.119	479.0816	479.083 1	-3.4	$C_{21}H_{20}O_{13}$	_[H-W]	313.055 9 (15%), 207.029 4 (27%), 193.013 3 (100%)	11-0-没食子酰岩白菜素	矮地茶	[21]	
37	22. 339	447. 092 8	447.093 3	-I.1	$C_{21}H_{20}O_{11}$	_ [M-H]	447.092 3, 234.017 5, 207.030 1, 192.006 7 (100%), 164.011 8	($2R$)-2 α -(4-hydroxybenzoyloxymethyl)-3 β , 4 α , 8, 10-tetralhydroxy-9-methoxy-2,3,4,4a α ,6,10b β -hexahydropynano [3,2-c] [2] benzopyran-6-one	矮地茶	I	
04	24. 541	499. 144 7	499. 145 7	-2.0	$C_{22}H_{28}O_{13}$	_[M-H]_	327.070 8 (100%), 312.048 0, 207.029 8, 192.006 4	ethyl 2-{[(2R, 3S, 4S, 4aR, 10hS)-10-(2-ethoxy-2-oxoethoxy)-3, 4-dihydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-3,4,4a, 10b-tetrahydro-2 <i>H</i> -pyrano [3,2-c] isochromen-8-y1]oxy acetate	矮地茶	1	

	- 11		//																									
	生物碱类									[] 歌类				[9	[9							黄酮类			_			
文献	[22]	$\begin{bmatrix} 23 \\ 23 \end{bmatrix}$	[23]	[23]	[23]	[23]	[23]	[24]	[24]	[25-26]	27-28	[28]	[29]	[25-26]	[25-26]	[30]	[31]	[31]	[31]	[32]	I	[14]	[14]	[14]	[33-34]	[14]	[35]	[36-37
来源 **	田田田	品加	足量	世里	世里	世里	日部	世里	足里	桑白皮	五指毛桃	五指毛桃	五指毛桃	桑白皮	桑白皮	桑白皮	桑白皮	桑白皮	桑白皮	白及	白及	穿破石	穿破石	穿破石	桑白皮,矮地茶	穿破石	矮地茶	穿破石
名称	6-hydroxycroomine	croomine	对叶百部碱异构体	stemoninine	对叶百部碱*	对叶百部碱异构体	对叶百部碱异构体	stemosessifoine or isomer	stemosessifoine or isomer	新绿原酸*	丁杏酸	对羟基肉桂酸	对羟基苯甲酸	绿原酸*	隐绿原酸*	1-caffeoyl quinic acid	咖啡酰莽草酸	咖啡酰莽草酸	咖啡酰莽草酸	batatasin III	3,5-dihydroxy-2'-methoxy-4-methyl bibenzyl	aromadendrin-7- O - B - D -glucopyranoside	二氢桑色素	二氢槲皮素	落新妇苷	山柰酚-7-0-葡萄糖苷	槲皮素	香橙素
醉片峰 m/2	338. 195 2 (100%), 264. 159 7, 236. 165 0 6 327. 200 3 (100%), 248. 164. 4	, 304. 192 3, 248. 164 0 (100%)		(100%), 372.2173, 316.1909, 298.1815		(100%), 302.2110	(100%), 302.2109	370. 202 1(100%), 300. 160 2, 296. 166 1, 200. 144 3	370. 202 4 (100%), 300. 160 7, 296. 166 2, 274. 181 8, s 200. 144 3	(100%), 179.034 6, 161.024 7, 135.044 9	(100%), 166.9999, 123.0095	(100%)	(100%), 108.0218		, 179. 034 4, 173. 044 9, 135. 044 8 (100%)	-335.077 6, 179.034 9, 161.024 6, 135.045 4 (100%), 1 133.030 4	335.076 9, 179.035 4, 161.024 3 (100%), 135.045 3, II 133.029 7	179.035 4, 173.045 8, 161.024 4 (100%), 135.045 6, Il. 133.029 7	_		259. 133 5, 151. 075 8 (100%), 135. 080 9, 121. 065 5	449.108 0, 287.056 4, 269.045 7, 259.061 2 (100%), a 125.024 8	285.040 9, 241.050 8, 217.051 4, 175.040 6, 151.004 1, 125.024 7 (100%), 107.014 6	285.040 8, 217.050 8, 177.019 5, 149.025 1, 125.024 7 (100%)	303.050 5, 285.040 2, 151.003 6 (100%)	447.091 8, 285.039 6 (100%), 257.045 4, 241.051 2, 151.003 7	303.049 5 (100%), 285.041 3, 257.045 9, 229.050 7, ‡ 153.019 1	161.025 0, 151.004 0, 125.024 9 (100%) 3
离子模式	[M+H] ⁺	+ [W+H]	[W+H]	$[M+H]^+$	$[M+H]^+$	$[M+H]^+$	[W+H]	[W+H]	[M+H] +	[M-H] -	_ [M-H]	$[M-H]^{-}$	[M-H]	$[M-H]^-$	$[M-H]^{-}$	M-H ₂ O-H]	_ [M-H] _	_ [M-H]	M+FA-H]	[W+H]	$[M+H]^+$	[M-H]	_ [M-H]	_ [M-H]	[M-H]	_ [M-H]	[M+H] +	
分子式	C ₁₈ H ₂₇ NO ₅ C ₁₈ H ₂₇ NO ₄	$C_{18}H_{27}NO_4$	$C_{22}H_{33}NO_4$	$C_{22}H_{31}NO_5$	$C_{22}H_{33}NO_4$	$C_{22}H_{33}NO_4$	$C_{22}H_{33}NO_4$	$C_{22}H_{29}NO_5$	$\mathrm{C}_{22}\mathrm{H}_{29}\mathrm{NO}_{5}$	$C_{16}H_{18}O_{9}$	$C_9H_{10}O_5$	$C_9H_8O_3$	$C_7H_6O_3$	$C_{16}H_{18}O_{9}$	$C_{16}H_{18}O_{9}$	$C_{16}H_{18}O_{9}$ [M- $H_{2}O$ -H]	$C_{16}H_{16}O_{8}$	$C_{16}H_{16}O_{8}$	$C_{15}H_{14}O_{6}$ [M+FA-H]	$C_{15}H_{16}O_{3}$	${\rm C_{16}H_{18}O_{3}}$	$C_{21}H_{22}O_{11}$	$C_{15}H_{12}O_7$	$C_{15}H_{12}O_7$	$C_{21}H_{22}O_{11}$	$C_{21}H_{20}O_{11}$	$C_{15}H_{10}O_7$	C ₁₅ H ₁₂ O ₆
误差 (×10 ⁻⁶)	-3.5		-3.8	∞	-2.5		-1.7	-1.2	-1.2	-2.0	2.3	0.8	1.3		0	-2.2	-2.2	-2.2	-2.2		-3.7	-1.9	-0.1	0.2	-3.0	-2.7	-3.3	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
理论值 m/z	338. 196 2	322. 201	376. 248		376.2482		376.248 2	388. 211. 8	388. 211 8			163.040			353.087	335.077 2	335.077 2	335.077 2	335.077	245. 117	259. 132 9	449. 108 9	303.051 0	303.051 0	449. 108 9	447. 093 3	303.0499	24.341 287.056 1 287.056 1 0 C ₁₅ H ₁₂ O ₆ [M-H] - 法 FA 共デ田齢 本共デルがが開発 ** 共デルが一部
实测值 m/z	338. 195 0	322. 200 7	376. 246 8	390, 227 0	376.2473	376.2469	376.2476	388. 211 3	388. 211 4	353.087 1	197. 046 0	163.0402	137.0246	353.0869	353.086 7	335.077 3	335. 076 5	335. 076 8	335.0767	245. 116 3	259. 131 9	449. 108 1	303.0510	303. 051 1	449. 107 6	447. 092 1	303.0489	287.056 1 日 田 雨舎
保留时间/ min	3. 404	5.072	11.587	12.055	13. 256	14. 294	14.356	44. 236	44. 857	2.346	2. 617	3.003	3.066	4. 928	5.211	9. 491	10.035	10. 436			43.898	7.777	13.080	13.605	16.633	20.571	20.878	24.341
序号 保	_∞ ⊆	13	20							3	4	9	7	12	14	17	18	19			20	16	23	25	30	34	35	39

Chinese Traditional Patent Medicine Vol. 46 No. 10

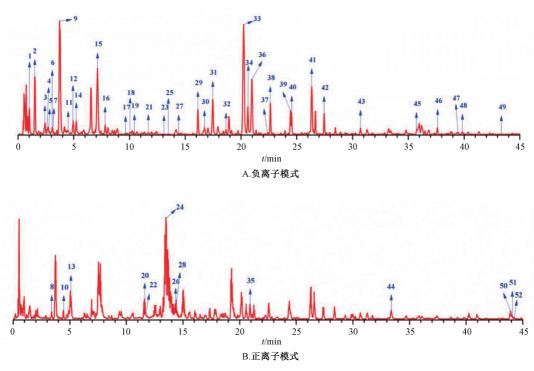


图 1 抗痨胶囊提取物总离子流图

Fig. 1 Total ion current chromatograms of Kanglao Capsules extract

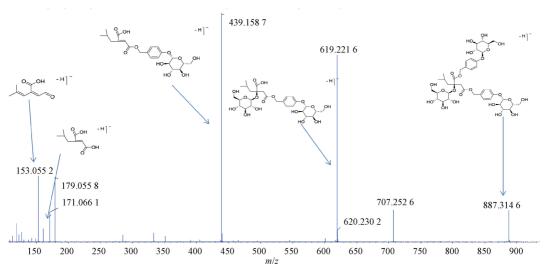


图 2 dactylorhin A 二级质谱图及其可能的裂解途径

Fig. 2 Secondary mass spectrometry and possible cleavage pathways of dactylorhin A

其中 2 个——parishin B or C 和 acetyl-gymnoside WI 尚未有来源于处方中药味的报道。另外,保留时间 20. 221、20. 960 min 的 2 个化合物由于其 MS^2 及 UV 最大吸收值与 1,4-二 [4-(葡萄糖氧) 苄基] -2-异丁基苹果酸酯类似,推测为后者衍生物,而保留时间 17. 464 min 的化合物为 dactylorhin A 类似物。

3.2 香豆素类 脱质子分子离子峰 $[M-H]^-$ 均在 ESI-MS 谱中发现,其中 m/z 192、234 是岩白菜素

类化合物的特色碎片离子峰,同时通常观察到 H_2O (18 Da)、CO (28 Da)、CH₃ (15 Da) 碎片的丢失。以岩白菜素为例(图 3), MS^2 谱图中 [M-H]⁻ 通过中性丢失 CH₃ 形成碎片离子峰 m/z 312.047 4 [M-H-CH₃]⁻,碎片离子峰 m/z 234.015 9 由 m/z 312.047 4 丢失 CHOCH₂OH 并脱水产生,即 [M-H-CH₃-CHOCH₂OH-H₂O]⁻,随后碎片离子峰 m/z 234.015 9 通过中性丢失 CO 或丢失 CH₂CO 形成 m/z 206.021 6 [M-H-CH₃-

CHOCH₂OH-H₂O-CO]⁻、192.005 5 [M-H-CH₃-CHOCH₂OH-H₂O - CH₂CO]⁻,碎片离子峰 m/z 192.005 5 进一步中性丢失 CO 形成 m/z 164.011 2 [M-H-CH₃-CHOCH₂OH-H₂O-CH₂CO-CO]⁻。以类似的裂解方式,根据分子式、 MS^2 片段和相关文献确定了其他 6 个化合物,其中 2 个——(2R)-2 α -(4-hydroxybenzoyloxymethyl)-3 β , 4 α , 8, 10-

tetrahydroxy-9-methoxy-2, 3, 4, 4a α , 6, 10b β -hexahydropyrano [3, 2-c] [2] benzopyran-6-one 和 ethyl 2- {[(2R, 3S, 4S, 4aR, 10bS) -10- (2-ethoxy-2-oxoethoxy) -3, 4-dihydroxy-2- (hydroxymethyl) -9-methoxy-6-oxo-3, 4, 4a, 10b-tetrahydro-2H-pyrano [3, 2-c] isochromen-8-yl] oxy} acetate 未见来源于矮地茶的报道。

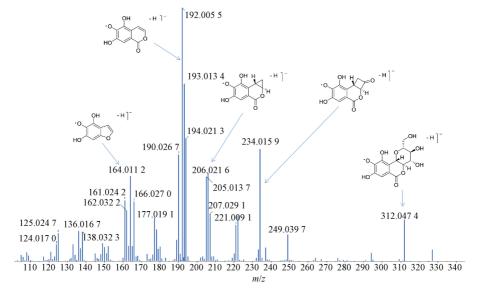


图 3 岩白菜素二级质谱图及其可能的裂解途径

Fig. 3 Secondary mass spectrometry and possible cleavage pathways of bergenin

3.3 生物碱类 ESI-MS 谱图显示出丰富的 [M+H]⁺离子,没有碎裂,有时还观察到 [M+Na]⁺离子。在 MS² 光谱中都产生了相当于 [M+H-74]⁺的丰富碎片离子,这是百部特征性生物碱的裂解共性,可能为氢转移到内酯环,通过四元过渡态消除中性碎片 $CH_3CH=C$ (OH)₂ 产生的。除 [M+H-74]⁺碎片外,MS² 光谱还显示中性碎片 CO、 CO_2 、 H_2O 的丢失。基于类似裂解方式,根据分子式、MS² 片段和相关文献,确定其他化合物分别为croomine 或其异构体、stemoninine、对叶百部碱或其异构体以及 stemosessifoine 或其异构体。以croomine 为例(图 4),MS² 谱图 [M+H]⁺通过中性丢失 $CH_3CH=C$ (OH)₂ 形成碎片离子峰 m/z 248. 164 0 [M+H- $CH_3CH=C$ (OH)₂]⁺。

[caffeic acid -H] $^-$; 在咖啡酰莽草酸中不同的是m/z 173($C_7H_9O_5$ $^-$)对应 [shikimic acid -H] $^-$, m/z 161($C_9H_5O_3$ $^-$)对应 [caffeic acid $-H-H_2O$] $^-$ 。以化合物 3、12、14、17 为例,其分子离子峰 [M-H] $^-$ 均为 m/z 353,推测 4 个化合物的分子式均为 $C_{16}H_{18}O_9$ 。在 MS^2 谱图中,碎片离子 m/z 191表明这些化合物属于咖啡酰奎宁酸,通过丢失 caffeoyl moiety($C_9H_6O_3$,162 Da)[M-H-162] $^-$ 形成。通过查阅相关文献及对照品比对,确定化合物 3、12、14 分别为新绿原酸、绿原酸、隐绿原酸,17 为 1-咖啡酰奎宁酸。绿原酸可能的裂解途径见图 5。

化合物 18、19、21 分子离子峰 $[M-H]^-$ 均为 m/z 335,推测三者分子式均为 $C_{16}H_{16}O_8$ 。在 MS^2 谱图中,碎片离子 m/z 179、161 表明这些化合物属于咖啡酰莽草酸。来源于桑白皮的 3-O-咖啡酰莽草酸可能的裂解途径见图 6。

3.5 黄酮类 在一级质谱中显示分子离子峰 [M-H]⁻, 黄酮苷类化合物常观察到糖基的丢失,形成的苷元 C 环呈现连续的 CO、CO₂ 中性丢失。二级

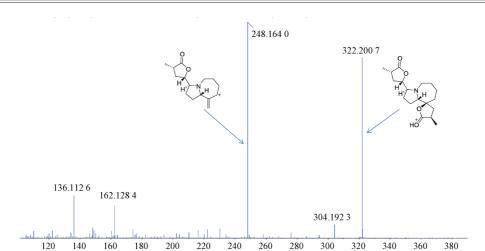


图 4 croomine 二级质谱图及其可能的裂解途径

Fig. 4 Secondary mass spectrometry and possible cleavage pathways of croomine

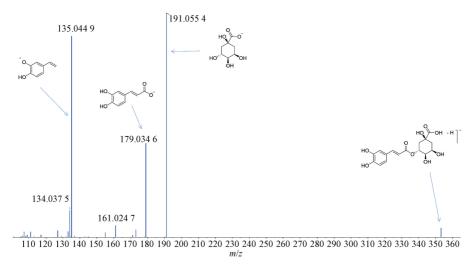


图 5 绿原酸二级质谱图及其可能的裂解途径

Fig. 5 Secondary mass spectrometry and possible cleavage pathways of chlorogenic acid

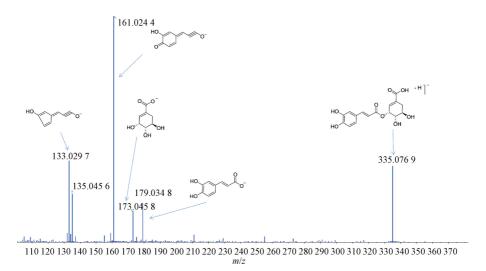


图 6 3-0-咖啡酰莽草酸二级质谱图及其可能的裂解途径

Fig. 6 Secondary mass spectrometry and possible cleavage pathways of 3-O-caffeoylshikimic acid

质谱中常出现 C 环 RDA 裂解,形成 $^{1.3}$ A 一碎片离子,以及 C 环发生 1,4 位裂解,形成 $^{1.4}$ A 一碎片离子。以黄烷-3-醇衍生物二氢桑色素为例(图 7),在一级质谱中显示分子离子峰为 m/z 303.051 0 [M-H] 一,二级质谱中 m/z 125.024 7 碎片离子由 $^{1.4}$ A 一离子裂解产生,m/z 125.024 7 碎片离子对应天然产物间苯三酚。二氢桑色素通过脱水形成黄

酮苷元,后者进一步呈现由 C 环 CO_2 中性丢失形成 m/z 241.050 8 的峰。由于 A 环中 β-二羟基构型的存在呈现 C_3O_2 (68 Da) 丢失,碎片离子 m/z 217.051 4 进一步丢失 C_2H_2O (42 Da),形成双环碎片离子 m/z 175.040 6。C 环 RDA 裂解形成的 1,3 A 碎片离子 m/z 151.004 1 进一步丢失 CO_2 ,产生碎片离子 m/z 107.014 6。

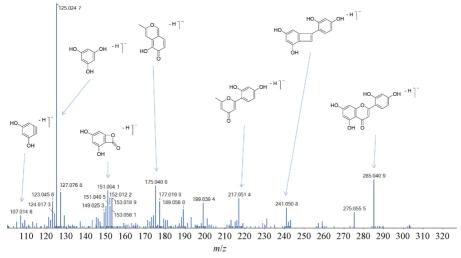


图 7 二氢桑色素二级质谱图及其可能的裂解途径

Fig. 7 Secondary mass spectrometry and possible cleavage pathways of dihydromorin

4 讨论与结论

本实验从抗痨胶囊提取物中鉴定出 52 种成分, 主要为岩白菜素类化合物和葡萄糖氧基苄基 2-异 丁基苹果酸酯类,其他包括生物碱类、酚类、黄 酮类。

岩白菜素类化合物来源于矮地茶,为胶囊的主要成分之一,是控制该药材质量的指标成分,与其作为君药一致。研究表明,岩白菜素在Mycobacterium tuberculosis H37Rv 感染的巨噬细胞和小鼠中没有显示直接的抗 M. tuberculosis H37Rv 活性,但呈现强大的免疫调节作用^[39]。

葡萄糖氧基苄基 2-异丁基苹果酸酯类主要来源于白及,具有自由基清除^[17]、神经保护、抗菌^[40]、NO 抑制^[38]等活性,但对其抗 M. tuberculosis的研究极少。从白及的功效来看,葡萄糖氧基苄基 2-异丁基苹果酸酯类应与其止血作用相关,由于热处理改变了葡萄糖氧基苄基 2-异丁基苹果酸酯类成分的相对含量,故工艺中一部分白及以细粉入药^[38]。

生物碱类来源于百部,具有独特的 perhydroazaazulene 特征^[41]及镇咳活性。例如, croomine 在柠檬酸诱导的豚鼠咳嗽模型中具有镇咳 作用, ID₅₀值为 0.18 mmol/kg^[42]。

酚类来源于桑白皮和五指毛桃,但均不是两者 特征性化合物。

黄酮类主要来源于穿破石,但未发现其特征性 戍基取代黄酮 prenylflavone。穿破石的另一典型咕 吨酮类成分 xanthones^[6,43-44]是一种有前景的抗 *M.* tuberculosis H37Rv 活性骨架^[45-47],但在胶囊中也未 发现。

综上所述,抗痨胶囊止咳成分主要为岩白菜素类、百部生物碱类化合物,而葡萄糖氧基苄基 2-异丁基苹果酸酯类为主要止血成分,同时其他酚类、黄酮类化合物可能起到抗氧化作用。由此推测,该制剂可能不直接具有抗 M. tuberculosis H37Rv 活性,而是通过免疫调节活性来治疗浸润性肺结核。

参考文献.

- [1] 国家药典委员会. 中华人民共和国药典: 2020 年版一部[S]. 北京: 中国医药科技出版社, 2020.
- [2] 广西壮族自治区食品药品管理局.广西壮族自治区壮药质量标准第二卷(2011年版)[S].南宁:广西科学技术出版社,2011.
- [3] 广西壮族自治区食品药品管理局. 广西壮族自治区壮药质

- 量标准第三卷 (2017 年版) [S]. 南宁: 广西科学技术出 版社, 2017.
- [4] Kobayashi H, de Mejía E. The genus Ardisia: a novel source of health-promoting compounds and phytopharmaceuticals [J]. J Ethnopharmacol, 2005, 96(3): 347-354.
- [5] Pilli R A, Rosso G B, C de Oliveira M. The chemistry of Stemona alkaloids: An update [J]. Nat Prod Rep, 2010, 27(12): 1908-1937.
- [6] Hou A, Fukai T, Shimazaki M, et al. Benzophenones and xanthones with isoprenoid groups from Cudrania cochinchinensis [J]. J Nat Prod, 2001, 64(1): 65-70.
- [7] Zheng Z P, Zhu Q, Fan C L, et al. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis [J]. Food Funct, 2011, 2(5): 259-264.
- [8] Ye X S, Tian W J, Wang G H, et al. Phenolic glycosides from the roots of Ficus hirta Vahl. and their antineuroinflammatory activities [J]. J Agric Food Chem, 2020, 68(14): 4196-4204.
- Ye X S, Tian W J, Liu X Z, et al. Lignans and [9] phenylpropanoids from the roots of Ficus hirta and their cytotoxic activities [J]. Nat Prod Res., 2022, 36(15): 3840-3849.
- [10] Xu D L, Pan Y C, Chen J S. Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata[J]. Front Pharmacol, 2019, 10: 1168.
- Chan E W, Lye P Y, Wong S K. Phytochemistry, [11] pharmacology, and clinical trials of Morus alba[J]. Chin J Nat Med, 2016, 14(1): 17-30.
- Wang R B, Qin Y D, Zhou J J, et al. Comprehensive evaluation [12] of Bletilla striata and its substitutes by combining phenotypic characteristic, chemical composition, and anti-melanogenic activity [J]. Phytochemistry, 2022, 195: 113059.
- Yang C H, Xia T, Wang C H Q, et al. Using the UPLC-ESI-Q-[13] TOF-MS^E method and intestinal bacteria for metabolite identification in the nonpolysaccharide fraction from Bletilla striata[J]. Biomed Chromatogr, 2019, 33(11): 4637.
- [14] Choi Y H. Chemical constituents from Cudrania tricuspidata [D]. Seoul: Seoul National University, 2018.
- [15] Wang X, Zhong X J, Zhou N, et al. Rapid characterizaiton of chemical constituents of the tubers of Gymnadenia conopsea by UPLC-Orbitrap-MS/MS analysis [J]. Molecules, 2020, 25(4): 898.
- [16] Li L M, Hao B, Zhang Y L, et al. Metabolite profiling and distribution of militarine in rats using UPLC-Q-TOF-MS/ MS[J]. Molecules, 2020, 25(5): 1082.
- [17] Morikawa T, Xie H H, Matsuda H, et al. Bioactive constituents from Chinese natural medicines. XVII. constituents with radical scavenging effect and new glucosyloxybenzyl 2-isobutylmalates from Gymnadenia conopsea [J]. Chem Pharm Bull (Tokyo) , 2006, 54(4): 506-513.
- 梅朝叶,向文英,杨 武,等. UPLC-MS/MS 同时测定白 [18] 及中6个指标成分的含量[J]. 天然产物研究与开发,

- 2016, 28(8): 1233-1237.
- [19] Piacente S, Pizza C, Tommasi N, et al. Constituents of Ardisia japonica and their in vitro anti-HIV activity [J]. J Nat Prod, 1996, 59(6): 565-569.
- [20] Yu K Y, Wu W, Li S Z, et al. A new compound, methylbergenin along with eight known compounds with cytotoxicity and antiinflammatory activity from Ardisia japonica [J]. Nat Prod Res, 2017, 31(22): 2581-2586.
- [21] Yu K Y, Gao W, Li S Z, et al. Qualitative and quantitative analysis of chemical constituents in Ardisiae Japonicae Herba [J]. J Sep Sci, 2017, 40(22): 4347-4356.
- [22] Schinnerl J, Kaltenegger E, Pacher T, et al. New pyrrolo [1, 2-a] azepine type alkaloids from Stemona and Stichoneuron (Stemonaceae) [J]. Monatshefte für Chemie, 2005, 136(9): 1671-1680.
- [23] Zhou Y, Jiang R W, Hon P M, et al. Analyses of Stemona alkaloids in Stemona tuberosa by liquid chromatography/tandem mass spectrometry [J] . Rapid Commun Mass Spectrom , 2006 , 20(6): 1030-1038.
- [24] Guo A, Jin L, Deng Z W, et al. New stemona alkaloids from the roots of Stemona sessilifolia [J]. Chem Biodivers, 2008, 5(4): 598-605.
- [25] Liu C H, Wahefu A, Lu X Y, et al. Chemical profiling of Kaliziri injection and quantification of six caffeoyl quinic acids in Beagle plasma by LC-MS/MS[J]. Pharmaceuticals (Basel), 2022, 15(6): 663.
- [26] Wang LT, Gao MZ, Yang Q, et al. An efficient strategy based on liquid-liquid extraction with acid condition and HSCCC for rapid enrichment and preparative separation of three caffeoylquinic acid isomers from mulberry leaves [J]. J Chromatogr Sci, 2019, 57(8): 738-744.
- [27] Gruz J, Novak O, Strnad M. Rapid analysis of phenolic acids in beverages by UPLC-MS/MS[J]. Food Chem, 2008, 111(3): 789-794.
- [28] Cheng J, Yi X M, Chen H Y, et al. Anti-inflammatory phenylpropanoids and phenolics from Ficus hirta Vahl [J]. Fitoterapia, 2017, 121: 229-234.
- [29] 刘绍华, 王延亮, 白家峰, 等. 岩木瓜茎干化学成分及 PTP1B 抑制活性研究[J]. 天然产物研究与开发, 2016, 28(11): 1741-1746.
- [30] Sanchez-Salcedo E M, Tassotti M, Rio D D, et al. (Poly) phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach [J]. Food Chem, 2016, 212: 250-255.
- [31] Zhang Q F, Guo Y X, Zheng G D, et al. Chemical constituents comparison between Rhizoma Smilacis Glabrae and Rhizoma Smilacis Chinae by HPLC-DAD-MS/MS [J]. Nat Prod Res, 2013, 27(3): 277-281.
- Zhou D, Chang W H, Liu B, et al. Stilbenes from the tubers of [32]

Vol. 46 No. 10

- Bletilla striata with potential anti-neuroinflammatory activity [J]. Bioorg Chem, 2020, 97: 103715.
- [33] Wu C, Wang H J, Liu Z Y, et al. Untargeted metabolomics coupled with chemometrics for leaves and stem barks of dioecious Morus alba L[J]. Metabolites, 2022, 12(2): 106.
- [34] Feng S X, Yuan J, Zhao D, et al. Systematic characterization of the effective constituents and molecular mechanisms of Ardisiae Japonicae Herba using UPLC-Orbitrap Fusion MS and network pharmacology [J]. PLoS One, 2022, 17(6): 0269087.
- [35] Li Y F, Hu L H, Lou F C, et al. PTP1B inhibitors from Ardisia japonica[J]. J Asian Nat Prod Res, 2005, 7(1): 13-18.
- [36] Chang C H, Lin C C, Kadota S, et al. Flavonoids and a prenylated xanthone from Cudrania-Cochinchinensis var. gerontogea[J]. Phytochemistry, 1995, 40(3): 945-947.
- [37] Kassem I A. A, El-Awdan S A, Saleh D O. Characterization of flavonoids and saponins from *Gleditsia triacanthos* by LC-ESI/ MS/MS analysis: Pharmacological assessment of the antihyperglycemic and anti-ulcerogenic activities of *G. triacanthos* methanolic fruit extract and its n-butanol fraction [J]. Pharmacognosy J, 2021, 13(3): 631-639.
- [38] Nishidono Y, Ishii T, Okada R, et al. Effect of heat processing on the chemical constituents and NO-suppressing activity of Bletilla tuber[J]. J Nat Med, 2020, 74(1): 219-228.
- [39] Dwivedi V P, Bhattacharya D, Yadav V, et al. The phytochemical bergenin enhances T Helper 1 responses and antimycobacterial immunity by activating the MAP kinase pathway in macrophages[J]. Front Cell Infect Microbiol, 2017, 7: 149.

- [40] Zhou M, Yuan F, Ruan H L, et al. HPLC-PDA-guided isolation of glucosyloxybenzyl 2-isobutylmalates from the pseudobulbs of Bletilla striata with neuroprotective and antimicrobial activities [J]. Phytochemistry, 2022, 201: 113287.
- [41] Greger H. Structural relationships, distribution and biological activities of *Stemona* alkaloids[J]. *Planta Med*, 2006, 72(2): 99-113.
- [42] Lin L G, Leung H P, Zhu J Y, et al. Croomine- and tuberostemonine-type alkaloids from roots of Stemona tuberosa and their antitussive activity[J]. Tetrahedron, 2008, 64(44): 10155-10161.
- [43] Fukai T, Oku Y, Hou A J, et al. Antimicrobial activity of isoprenoid-substituted xanthones from Cudrania cochinchinensis against vancomycin-resistant enterococci [J]. Phytomedicine, 2005, 12(6-7): 510-513.
- [44] Chen L, Zhou Q, Li B, et al. A new flavonoid from Cudrania cochinchinensis [J]. Nat Prod Res, 2015, 29(13): 1217-1221.
- [45] Yuanita E, Sudirman, Dharmayani N K, et al. Quantitative structure-activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents [J]. J Clin Tuberc Other Mycobact Dis, 2020, 21: 100203.
- [46] Elsaman T, Mohamed M S, Eltayib E M, et al. Xanthone: a promising antimycobacterial scaffold [J]. Med Chem, 2021, 17(4): 310-331.
- [47] Suksamram S, Suwannapoch N, Phakhodee W, et al. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana [J]. Chem Pharm Bull (Tokyo), 2003, 51(7): 857-859.