参茸片 (薄膜衣片) 质量标准提升研究

但济修, 陆秋涛, 詹常森*

(上海和黄药业有限公司,上海中药固体制剂创新工程技术研究中心,上海 201401)

摘要:目的 提升参茸片 (薄膜衣片) 质量标准。方法 采用显微鉴别法对人参和鹿茸进行定性鉴别,HPLC 法同时测定人参皂苷 Rg1、人参皂苷 Re、人参皂苷 Rb1 的含量。结果 参茸片 (薄膜衣片) 粉末具有与人参和鹿茸相对应的显微特征。3 种人参皂苷分别在 25.51~816.19 μ g/mL (r=0.999 9)、23.01~736.34 μ g/mL (r=0.999 9)、23.75~760.03 μ g/mL (r=0.999 9) 范围内线性关系良好,平均加样回收率分别为 101.3%、101.7%、104.0%,RSD 分别为 1.13%、1.17%、2.85%。结论 该方法科学准确、重复性好、稳定可靠,可有效控制参茸片 (薄膜衣片) 质量。

关键词:参茸片(薄膜衣片);质量标准;人参;鹿茸;显微鉴别;人参皂苷;HPLC

中图分类号: R927.1

文献标志码:B

文章编号: 1001-1528(2024)05-1627-04

doi:10.3969/j.issn.1001-1528.2024.05.034

参茸片由人参、鹿茸 2 味中药组成,具有补益气血、强壮心肾的功能,适用于治疗因气血亏虚导致的身体虚弱、精神疲乏、心跳异常、呼吸短促、腰膝酸软等[1]。参茸片(薄膜衣片)是上海和黄药业有限公司在参茸片(糖衣片)基础上开发的新品,是目前市场上唯一的薄膜衣片剂型的参茸片。公司在该产品的研制过程中不仅优化了工艺,而且在原有《中药成方制剂卫生部药品标准》基础上,增加了显微鉴别^[2]和 3 种人参皂苷含量测定^[3],全面提高了其质量控制水平,现报道如下。

1 材料

1.1 仪器 BX53 生物显微镜 (日本 Olympus 公司); Agilent 1260 高效液相色谱仪,配置 Agilent OpenLAB CDS 2. X 工作站、G1322A 脱气泵、G1312B 四元泵、G7111B 二元泵、G7129A 标准自动进样器、G7116A 柱温箱、G7115A DAD 检测器 (美国 Agilent 公司); HH-4 电热恒温水浴锅(常州国华电器有限公司); SK7200H 超声波清洗机 (上海科导超声仪器有限公司); AL204 电子分析天平 (万分之一)、X205BDU 电子天平 (十万分之一) (瑞士梅特勒-托利多公司)。

1.2 试剂与药物 人参皂苷 Rg1 (批号 110703-201731, 纯度≥93.6%)、人参皂苷 Re(批号 110754-201626, 纯度≥97.4%)、人参皂苷 Rb1 (批号 110704-201626, 纯度≥91.1%) 对照品均购自中国食品药品检定研究院。参茸片(薄膜衣片)(0.18 g/片,批号 S180301、S180302、S180303、20110102、20120101、20120102、210903、211004、211005、211006)由上海和黄药业有限公司生产。乙腈为色谱纯;其余试剂均为分析纯;水为自制纯化水。

2 方法与结果

2.1 显微鉴别 取本品适量, 去包衣, 研细, 取少许粉末 置于载玻片上,滴加水合氯醛溶液进行处理,适当加热至 透化完全后加上盖玻片,在 10×40 倍显微镜下观察,结果 见图 1。人参的显微特征[4] 显示,树脂道碎片易见,且内 部含有明显的黄色块状分泌物;偏光镜下草酸钙簇晶棱角 尖锐;木栓细胞呈现类方形或多边形态,其壁呈细波浪状 弯曲:导管通常独立存在或聚集分布。另外,在2020年版 《中国药典》中人参的显微特征[5]还包含淀粉粒,而参茸 片(薄膜衣片)辅料中有淀粉,存在干扰,故不以其淀粉 粒为其显微特征。鹿茸显微特征[6-8]显示,骨质碎片呈棕、 淡黄或淡灰的色泽, 为形态各异的不规则小碎块, 表面具 有细纹和点状孔隙:骨陷窝大多数呈类圆形或梭形,大小 排列各异, 边缘隐约可见骨小管呈放射状沟纹; 未骨化骨 组织色浅, 边缘不规整, 表面凹凸, 中间隐约可见条纹结 构; 偶见呈现灰白或土黄色泽的毛茸, 其表面有一层薄而 透明的扁平细胞以覆瓦状紧密排列,细胞的游离端指向毛 尖方向。

2.2 样品含量测定

2. 2. 1 色谱条件 Kromasil 100-5- C_{18} 色谱柱(250 mm×4. 6 mm, 5 μ m); 流动相乙腈(A)-水(B), 梯度洗脱(0~35 min, 81% B;35~55 min, 81% ~71% B;70~100 min, 71%~60% B); 体积流量 1. 0 mL/min;柱温 25 °C;检测波长 203 nm;进样量 10 μ L。

2.2.2 溶液制备

2.2.2.1 对照品溶液 精密称取人参皂苷 Rg1、Re、Rb1 对照品适量,甲醇制成每 1 mL 分别含三者 0.203 5、0.211 7、0.210 1 mg 的溶液,摇匀,过滤,即得。

收稿日期: 2023-05-03

作者简介:但济修 (1990—),男,硕士,工程师,从事中药制剂、质量研究。Tel: (021) 62506452, E-mail: danjixiu@ shpl.com. cn * 通信作者: 詹常森 (1968—),男,博士,教授级高级工程师,从事中药现代化、成果转化研究。Tel: (021) 62506452, E-mail: zhanchangsen@ shpl.com. cn

Chinese Traditional Patent Medicine

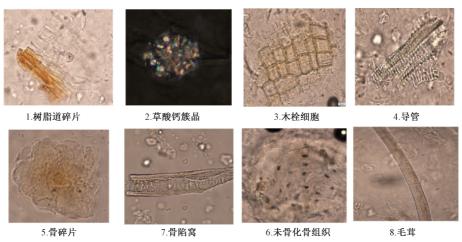
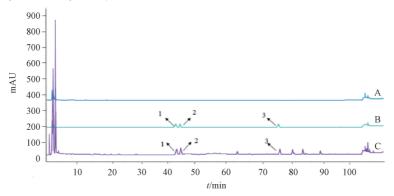



图 1 显微特征图

2.2.2.2 供试品溶液 取本品 30 片, 去包衣, 粉碎, 过 5 号筛。精密称定 2 g 粉末左右, 置索氏提取器内, 加入三氯甲烷加热回流 3 h, 弃去三氯甲烷液, 待药渣中溶剂挥干后连同滤纸筒移至锥形瓶中, 精密加入 50 mL 水饱和正丁醇,密塞, 静置过夜, 超声(功率 350 W, 频率 53 kHz)处理 30 min, 过滤, 弃去初滤液, 精密量取续滤液 25 mL, 置于蒸发皿内蒸干, 用甲醇将残渣溶解并转移至 5 mL 量瓶中,以甲醇定容,摇匀,过滤,取续滤液,即得。

2.2.2.3 阴性样品溶液 按处方配比 (除去人参)模拟制剂工艺,制成缺人参的阴性样品,按"2.2.2.2"项下方法制备,即得。

2.2.3 专属性试验 按 "2.2.2" 项下方法制备对照品、供试品、阴性样品溶液,在 "2.2.1" 项色谱条件下进样测定,结果见图 2。由此可知,阴性未产生干扰效应,说明该方法具备良好的专属性。

注: A 为阴性样品, B 为对照品, C 为供试品。

1. 人参皂苷 Rg1 2. 人参皂苷 Re 3. 人参皂苷 Rb1

图 2 各成分 HPLC 色谱图

2.2.4 线性关考察系 精密称取人参皂苷 Rg1、Re、Rb1 对照品适量,甲醇制成对照品溶液,使三者质量浓度分别 为 816.19、736.34、760.03 $\mu g/mL$,并将其稀释成 6 个质

量浓度,在"2.2.1"项色谱条件下进样测定。以各成分质量浓度为横坐标(X),峰面积为纵坐标(Y)进行回归,结果见表1,可知各成分在各自范围内线性关系良好。

表 1 各成分线性关系

成分	回归方程	r	线性范围/(μg·mL ⁻¹)
人参皂苷 Rg1	<i>Y</i> =4. 067 <i>X</i> +19. 311	0. 999 9	25. 51 ~ 816. 19
人参皂苷 Re	Y = 3.134X + 12.201	0. 999 9	23. 01 ~ 736. 34
人参皂苷 Rb1	Y = 2.772X + 10.942	0. 999 9	23.75~760.03

2.2.5 精密度试验 取 "2.2.2.1" 项下对照品溶液适量,在 "2.2.1" 项色谱条件下进样测定 6 次,测得人参皂苷 Rg1、Re、Rb1 峰 面 积 RSD 分别为 0.22%、0.17%、0.26%,说明仪器仪器精密度良好。

2.2.6 稳定性试验 取 "2.2.2.1" 项下对照品溶液适量,

常温下于 0、2、4、8、12、16、24 h 在 "2. 2. 1" 项色谱条件下进样测定,测得人参皂苷 Rg1、Re、Rb1 峰面积 RSD分别为 1.20%、1.06%、1.70%,表明溶液在 24 h 内稳定性良好。

2.2.7 重复性试验 取同一份本品 (批号 S180301), 按

"2. 2. 2. 2" 项下方法制备 6 份供试品溶液,在 "2. 2. 1" 项色谱条件下进样测定,测得人参皂苷 Rg1、Re、Rb1 峰面积 RSD 分别为 1. 09%、1. 15%、2. 13%,表明该方法重复性良好。

2.2.8 加样回收率试验 取同一份本品(批号S180301),除去包衣后粉碎,精密称定9份,每份1g,分成高、中、低3个质量浓度(每个3份),分别加入含人参皂苷Rg1、

Re、Rb1 (质量浓度分别为 0.114 76、0.132 07、0.126 96 mg/mL) 的对照品溶液 5、10、15 mL, 按 "2.2.2.2" 项下方法制备供试品溶液,在 "2.2.1" 项色谱条件下进样测定,结果见表 2。由此可知,各成分加样回收率均符合2020 年版《中国药典》四部"9101 分析方法验证指导原则"项下不同含量的回收率限度要求。

表 2 各成分加样回收率试验结果 (n=9)

		表 2 ————————————————————————————————————	各成分加杆回收≚ ———————	←	9)		
成分	取样量/g	原有量/mg	加入量/mg	测得量/mg	回收率/%	平均回收率/%	RSD/%
人参皂苷 Rg ₁	1.004 4	1. 215 3	1. 721 4	2. 964 1	101.6	101. 3	1. 13
	1.003 0	1. 213 6	1.7214	2. 941 3	100. 4		
	1.004 8	1. 215 8	1.7214	2. 956 2	101. 1		
	1.002 1	1. 212 5	1. 147 6	2. 379 5	101.7		
	1.003 6	1. 214 3	1. 147 6	2. 362 7	100. 1		
	1.049 6	1. 270 0	1. 147 6	2. 450 4	102. 9		
	1.029 5	1. 245 7	0. 573 8	1.8192	100.0		
	1.0189	1. 232 9	0. 573 8	1.811 1	100.8		
	1.019 3	1. 233 4	0. 573 8	1.825 0	103. 1		
人参皂苷 Re	1.004 4	1.406 2	1. 981 1	3.430 2	102. 2	101. 7	1. 17
	1.003 0	1.404 2	1. 981 1	3.4100	101. 2		
	1.004 8	1.406 7	1. 981 1	3.425 8	101. 9		
	1.002 1	1.402 9	1. 320 7	2. 752 1	102. 1		
	1.003 6	1.405 0	1. 320 7	2. 737 5	100. 9		
	1.049 6	1.4694	1. 320 7	2. 825 3	102. 7		
	1. 029 5	1.441 3	0.6604	2.0964	99. 2		
	1.0189	1. 426 5	0.6604	2.0980	101.7		
	1.019 3	1.427 0	0.6604	2. 109 8	103.4		
人参皂苷 Rb ₁	1.004 4	1. 335 9	1.904 5	3. 289 0	101.9	104. 0	2. 85
	1.003 0	1. 334 0	1.904 5	3. 347 8	105. 1		
	1.004 8	1. 336 4	1.904 5	3. 378 1	106. 6		
	1.002 1	1. 332 8	1. 269 6	2. 629 3	101.4		
	1.003 6	1. 334 8	1. 269 6	2. 621 5	100. 6		
	1.049 6	1.396 0	1. 269 6	2. 780 5	108. 2		
	1. 029 5	1. 369 2	0.6348	2.0616	107. 9		
	1.0189	1. 355 1	0.6348	2.014 5	102. 7		
	1.019 3	1. 355 7	0. 634 8	2.009 2	104. 1		

2.2.9 样品含量测定 取 10 批样品,按 "2.2.2.2"项下方法制备供试品溶液,在 "2.2.1"项色谱条件下进样测定,据文献 [9] 报道,人参皂苷 Re 在一定的反应件下可转化成人参皂苷 Rg1,并参考 2015 年版、2020 年版《中国药典》中人参的含量计算方法,以每片含人参皂苷 Rg1、Re 总含量及单独的人参皂苷 Rb1 含量计算,结果见表 3。

3 讨论

显微鉴别是中药检验中较常用的方法之一,相较于理化鉴别,其具有检验效率高、操作流程便捷、试剂用量较少、环境污染小且无需依赖复杂且高昂的分析设备等优点^[2]。特别是在当前倡导低碳环保的时代背景下,中药研究领域和实际质量管理工作中,显微鉴别方法的应用日益广泛,对于保障中成药的安全性和有效性具有重要意义。参茸片由人参和鹿茸原粉入药,其含有与药材相似的显微特征结构。本研究利用该特点,研究建立了参茸片(薄膜

衣片)中的显微鉴别方法,保证了成品的质量。

表 3 各成分含量测定结果

批号	人参皂苷 Rg1+人参皂苷	人参皂苷 Rb1/	
14. 分	$\text{Re/}(\text{mg} \cdot \not\vdash_{\Gamma}^{L-1})$	$(mg \cdot J_1^{L-1})$	
S180301	0. 443	0. 225	
S180302	0. 443	0. 248	
S180303	0. 443	0. 255	
20110102	0.480	0. 267	
20120101	0. 500	0. 300	
20120102	0. 434	0. 253	
210903	0.470	0. 303	
211004	0. 475	0. 293	
211005	0. 462	0. 242	
211006	0. 459	0. 235	
平均值	0. 461	0. 262	

参茸片以人参为君药,具有大补元气、复脉固脱等多种功效^[7],其中人参皂苷 Rg1^[10-11]、人参皂苷 Re^[12]、人参皂苷 Rb1^[13-14]为主要成分和药效物质^[15-16],2005 年版至 2020 年版《中国药典》均以上述 3 种成分作为人参含量测定指标。本研究根据参茸片的组方和功效,建立了HPLC 法同时测定参茸片(薄膜衣片)中上述 3 种成分含量。

参茸片(糖衣片)为上海和黄药业有限公司的传统片剂品种,其中包糖衣操作大多依靠人工经验,易受环境影响^[17-18]而引起裂片、花斑等问题,质量控制难度大,通过将其改为薄膜衣片,不仅缩短了生产时间,提高了操作自动化程度,其质量相比于糖衣片更稳定^[19],并且通过增加显微鉴别和含量测定提升了其质量控制水平。上述改进生产流程技术、选择更合适的剂型、提升质量控制水平的开发路径对中药二次开发^[20]具有重要的借鉴意义,期待助力中药研发领域实现创新价值。

4 结论

本研究开发的检测技术具有科学性和准确性,且方法可重复,结果稳定可靠,可有效控制参茸片(薄膜衣片)质量。目前,参茸片(薄膜衣片)已获得国家药品监督管理局补充批件,上述质量控制方法也已经投入应用,该产品的研究路径是对中药老产品二次开发的尝试,也是在中药质量现代化研究领域中的探索。

参考文献:

- [1] WS3-B-3866-98, 中华人民共和国卫生部药品标准中药成方制剂(第二十册)[S].
- [2] 毛雯雯, 万晓婧, 刘惠娟, 等. 显微鉴定在中药质量标准中的应用及进展[J]. 世界科学技术 (中医药现代化), 2014, 16(3); 538-542.
- [3] 吴晓民,赵 丹,朱艳萍,等.人参皂苷分析测定方法的研究进展[J].上海中医药杂志,2018,52(5):94-100.
- [4] 裴 勇. 人参及其常见伪品的鉴别[J]. 光明中医, 2021, 36(19): 3266-3268.
- [5] 国家药典委员会. 中华人民共和国药典: 2020 年版一部 [S]. 北京: 中国医药科技出版社, 2020.

- [6] 刘 丽,康廷国. 7 种鹿茸茸毛的显微鉴别及系统聚类分析 [J]. 中药材, 2009, 32(3): 345-347.
- [7] 张小冬,李垠含,刘 颖. 鹿茸的性状及显微鉴别[J]. 甘肃医药,2018,37(2):162-163.
- [8] 何晓凤. 鹿茸品质系统评价方法的研究[D]. 长春: 吉林农业大学, 2024.
- [9] 陈思键,吴冬雪,刘淑莹,等.人参皂苷化学转化与生物 转化研究进展[J].中成药,2022,44(5):1539-1545.
- [10] 邓锟红,刘亚男,谭鸿毅,等.人参皂苷 Rg1 对肾疾病的保护作用及机制研究现状[J].中国临床药理学杂志,2021,37(7):910-913.
- [11] 王超楠,赵大庆,王 健,等.人参皂苷 Rgl 治疗阿尔茨 海默病作用及机制的研究进展[J].中成药,2021,43 (4):984-987.
- [12] 田 静,任雨贺,刘淑莹,等.人参皂苷 Re 对心血管系统的药理作用研究进展[J].安徽农业科学,2019,47(6):23-25.
- [13] 朱 谋, 巩晓晨, 刘冬阳, 等. 人参皂苷 Rb1 对改善 2 型糖尿病大鼠糖脂代谢紊乱的作用[J]. 食品工业科技, 2022, 43(3); 367-373.
- [14] 胡 超,周 静,许琼明,等.人参皂苷 Rb1 对肾脏疾病影响研究进展[J]. 辽宁化工,2018,47(11):1153-1155;1158.
- [15] 李赫健,李 虹,金 玉,等.人参皂苷 Rg1、Rb1 的药效及作用机制研究进展[J]. 武汉大学学报(理学版), 2019,65(4):323-332.
- [16] 高 健, 吕邵娃. 人参化学成分及药理作用研究进展[J]. 中医药导报, 2021, 27(1): 127-130; 137.
- [17] 胡崇茂,陈佩英,胡晓晓,等. 右旋糖酐铁糖衣片改为薄膜衣片生产工艺探讨[J]. 首都医药,2014,21(24):191-192.
- [18] 谭 劼,林泉松,夏 晟,等.消眩止晕片糖衣片改薄膜 衣片包衣工艺研究[J].山东化工,2022,51(12):32-34;37.
- [19] 刘旭东,张益勤.中药糖衣片与薄膜衣片质量研究[J]. 中国现代应用药学,2000,17(S1):38-39.
- [20] 孙 昱,徐 敢,汪 祺.中药二次开发的研究思路探讨 [J].中草药,2021,52(13):4107-4113.