Vol. 45 No. 5

艺[J]. 中草药, 2018, 49(16): 3829-3834.

- [16] 李 江,陈凌云,李 军. AHP-CRITIC 结合 Box-Behnken 和 D-Optimal 设计优选芪龙愈创凝胶的制备工艺[J]. 中药 材, 2020, 43(10); 2510-2515.
- [17] 王永洁,孙铭忆,邓莉莉,等. 基于 AHP-CRITIC 的 D-最

优混料设计优化复方黄芪乳膏处方[J]. 中国实验方剂学杂志, 2020, 26(3): 110-116.

[18] 吴晓鸾,马建芳,任飞亮,等.普罗雌烯乳膏流变学性质质量控制方法的建立[J].中国医药工业杂志,2019,50(2);220-225.

3种离子液体对超声辅助水蒸气蒸馏提取马齿苋挥发油的影响

扈本荃, 唐一梅, 郑立昊, 王 娜, 白鲁源, 王程峰 (西安医学院药学院,陕西 西安 710021)

摘要:目的 考察 1-丁基-3-甲基咪唑溴([BMIM] Br)、1-己基-3-甲基咪唑溴([HMIM] Br)、1-辛基-3-甲基咪唑溴([OMIM] Br) 离子液体对超声辅助水蒸气蒸馏提取马齿苋挥发油的影响。方法 以离子液体与水比例为 1:60 提取挥发油,GC-MS 法分析成分。结果 3 种离子液体提取所得挥发油的提取率均比水提取高,其中[HMIM] Br、[OMIM] Br 提取后成分也多于水提取。结论 1-烷基-3-甲基咪唑溴类离子液体有助于马齿苋挥发油提取。

关键词: 马齿苋; 挥发油; 超声辅助水蒸气蒸馏提取; 1-丁基-3-甲基咪唑溴 ([BMIM] Br) 离子液体; 1-己基-3-甲基咪唑溴 ([HMIM] Br) 离子液体; 1-辛基-3-甲基咪唑溴 ([OMIM] Br) 离子液体; GC-MS

中图分类号: R284.2

文献标志码:B

文章编号: 1001-1528(2023)05-1615-05

doi:10.3969/j.issn.1001-1528.2023.05.037

离子液体是一种由有机阳离子与无机或有机阴离子组成,熔点一般低于 $100 \, ^{\circ}$ 、是在室温或接近室温下呈液态的盐[1],具有溶剂与催化剂的双重功能,有学者将其与超临界流体 CO_2 、双水相合称为三大绿色溶剂[2]。它可溶解纤维素,在提取中草药时可破坏植物中的细胞壁,与传统溶剂相比提取效率更高,性质更稳定,并且通常不与被提取成分发生反应[3],广泛应用于中药提取[48]。

马齿苋功效清热解毒、止血凉血^[9],具有抑菌、抗炎、抗氧化、降血脂等药理作用,含黄酮、多糖、生物碱、挥发油等成分。前期报道,马齿苋挥发油可显著影响辣椒素诱导的 Trpv1 通道过表达,从而对湿疹瘙痒起到作用,有望成为相关治疗的新靶点^[10],如今该类成分不仅被广泛应用于各类护肤品中,还在防治婴幼儿蚊虫叮咬、防痱止痱方面有着较好的功效^[11-12]。

目前,马齿苋挥发油提取方法大多采用水蒸气蒸馏,但提取率较低。本实验分别以1-丁基-3-甲基咪唑溴([BMIM]Br)、1-己基-3-甲基咪唑溴([HMIM]Br)、1-辛基-3-甲基咪唑溴([OMIM]Br)离子液体为溶剂,采用超声辅助水蒸气蒸馏法提取马齿苋挥发油,以期为该类成分进一步研究提供依据。

1 材料

1.1 仪器 Agilent 7890A-5975C 气相质谱联用仪 (美国

Agilent 公司); DF-101S 集热式恒温加热磁力搅拌器 (郑州 长城科工贸有限公司); MH-1000 调温型电热套 (北京科 伟永兴仪器有限公司)。

1.2 试剂与药物 1-丁基-3-甲基咪唑溴([BMIM] Br)、1-己基-3-甲基咪唑溴([HMIM] Br)、1-辛基-3-甲基咪唑溴([OMIM] Br)离子液体(自制)。马齿苋购自药材市场,经西安医学院药学院生药教研室张彦老师鉴定为正品。甲醇、正己烷为色谱纯(天津市科密欧化学试剂有限公司);其余试剂均为分析纯。

2 方法

2.1 挥发油提取 称取药材粗粉 80 g, 置于圆底烧瓶中, 分别以水、离子液体溶液 (1:60) 为提取溶剂, 料液比为 1:8, 在 40 ℃下超声提取 30 min, 浸泡 2 h, 水蒸气蒸馏法提取 10 h, 乙醚萃取并弃去下层, 无水硫酸钠除水,减压旋蒸除去溶剂, 收集挥发油, 计算提取率, 公式为提取率= 挥发油质量 ×100%。

2.2 GC-MS 分析条件 参考文献 [13-14] 报道。

2.2.1 色谱 HP-5MS 石英毛细管柱 (30 m×250 μm×0.25 μm);程序升温 (初始温度 50 ℃,保持 2 min,以5 ℃/min 升至 140 ℃,保持 3 min,以3 ℃/min 升至 220 ℃,保持 5 min);进样量1.0 μL;分流比10:1;载气

收稿日期: 2022-01-10

基金项目: 陕西省科技厅计划项目 (2023-JC-YB-771); 陕西省教育厅大学生创新训练计划项目 (20196670); 西安医学院优势学科开放项目 (2016YXXK13); 西安医学院大学生创新训练计划项目 (121519037)

作者简介: 扈本荃(1971—), 女,硕士,教授,从事药物制剂及其质量控制研究

高纯氦气;进样口温度 250 ℃。

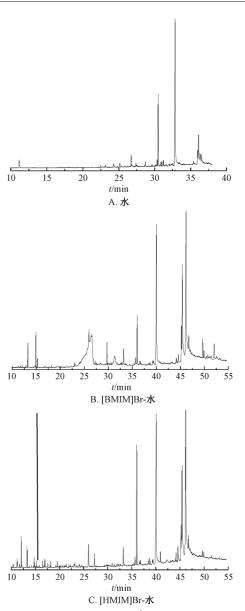
2.2.2 质谱 电子轰击 (EI) 离子源; 电子能量 70 eV; 灯丝发射电流 200 μ A; 离子源温度 230 \mathbb{C} ; 接口温度 280 \mathbb{C} ; 四级杆温度 150 \mathbb{C} ; 溶剂延迟 3 min; 扫描质量范围 m/z 10~500。

2.3 供试品溶液制备 少量正己烷溶解挥发油,定容至 10 mL 量瓶中,摇匀,精密量取 500 μL,置于 10 mL 量瓶中,定容,无水硫酸钠除水,即得,进样前经 0.45 μm 微孔滤膜过滤,取 1.0 μL 续滤液进样测定。

3 结果

3.1 挥发油提取率 表 1 显示, [BMIM] Br 提取时提取率最高, [HMIM] Br、[OMIM] Br次之, 水最低, 即离子液体提取效果优于水, 可能是因为离子液体为可溶性盐, 既存在亲水基团, 也存在疏水基团, 具有破坏纤维素、溶解细胞壁的能力, 增加了挥发油溶解度, 而且在提取过程中不会挥发, 不影响提取成分; 离子液体中阴离子基团均为 Br⁻; 阳离子基团对提取率影响程度依次为 [BMIM] * < [HMIM] * < [OMIM] * , 可能是因为随着 1-烷基-3-甲基咪唑中的烷基链加长, 提取率逐渐升高, 而 [OMIM] Br 中的烷基链最长, 亲脂性最强, 根据相似相溶原理, 对挥发油的作用也最强。

表 1 挥发油提取率测定结果 (n=3)


提取溶剂	挥发油提取率/(mg·g ⁻¹)
水	0. 306
[BMIM] Br-水	0. 349
[HMIM]Br-7k	0. 419
[OMIM] Br-水	0. 511

3.2 挥发油成分分析 GC-MS 总离子流图见图 1,再采用 NIST 标准质谱图库进行分析,峰面积归一化法计算相对含量,结果见表 2~6。

表 2 水提取马齿苋挥发油 GC-MS 分析结果

编号	保留时间/	化合物	分子式	相对含
洲分	min	化日初	21177	量/%
1	11. 156	戊基环丙烷	C ₈ H ₁₆	1. 70
2	24. 303	月桂酸	${\rm C_{12}H_{24}O_{2}}$	0.41
3	25. 159	新戊酸 6-烯脂	$C_{15}H_{24}O_2$	0.68
4	27. 399	十九烷	$C_{19}H_{40}$	0.53
5	28.717	十四烷 c	${\rm C_{14}H_{28}O_{2}}$	1. 11
6	30. 355	3,7,11,15-四甲基-2-十六碳烯-1-醇	$\mathrm{C_{20}H_{40}O}$	2. 37
7	30. 486	植酮	$C_{18}H_{36}O$	14. 92
8	30. 999	邻苯二甲酸(2-异丁基庚)酯	$C_{19}H_{28}O_4$	1.03
9	31. 223	法尼基丙酮	$C_{18}H_{30}O$	1. 23
10	32. 841	棕榈酸	$C_{16}H_{32}O_2$	51.11
11	35. 369	二十一烷	$\mathrm{C}_{21}\mathrm{H}_{44}$	0.74
12	35. 982	亚油酸	$C_{18}H_{32}O_2$	3. 63
13	36. 105	亚麻酸乙酯	$\mathrm{C_{18}H_{30}O_{2}}$	12. 18
14	36. 329	2,2'-亚甲基双(4-甲基-6-叔丁基)苯酚	$\mathrm{C_{23}H_{32}O_2}$	3. 96
15	36. 499	硬脂酸	$C_{18}H_{36}O_2$	2. 38

由表 2 可知, 水提取挥发油中共检测出 16 种成分, 占总量的 97.98%, 主要是酯类、脂肪酸类、酮类、醇类、烷

10 15 20 25 30 35 40 45 50 55

t/min

D. [OMIM]Br-木

图 1 不同溶剂体系马齿苋挥发油 GC-MS 总离子流图

烃类、酚类,其中含量最高的是棕榈酸。由表 3 可知, [BMIM] Br-水提取挥发油中共检测出 11 种成分,占总量的 97.96%,主要是脂肪酸类、醇类、酯类、酮类、酚类,其中含量最高的是油酸。由表 4 可知, [HMIM] Br-水提取挥发油中共检测出 27 种成分,占总量的 98.01%,主要是

表 3 [BMIM] Br-水提取马齿苋挥发油 GC-MS 分析结果

编号	保留时间/	化本物	化合物 分子式	
細分	min	化日初	刀丁八	量/%
1	13. 267	正辛酯	$\mathrm{C_8H_{16}O_2}$	1. 37
2	14. 922	α-松油醇	$\mathrm{C_{10}H_{18}O}$	1.94
3	25. 999	月桂酸	$C_{12}H_24O_2$	1. 28
4	29. 743	10,13-十八碳二炔酸甲酯	$\rm C_{15} H_{22} O_2$	2.07
5	33. 214	木香烯内酯	$C_{19}H_{40}$	1.76
6	36. 028	植酮	$\mathrm{C_{18}H_{36}O}$	9. 56
7	40.078	棕榈酸	$C_{16}H_{32}O_2$	26. 27
8	45. 449	亚油酸	$C_{18}H_{32}O_2$	18.68
9	46. 208	油酸	$C_{18}H_{32}O_2$	29. 25
10	46. 776	植物醇	$\mathrm{C}_{20}\mathrm{H}_{40}\mathrm{O}$	2.66
11	52. 074	硬脂酸酯乙烯基	$\rm C_{20} \rm H_{38} \rm O_2$	3. 12

脂肪酸类、醇类、酯类、酮类、酚类,其中含量最高的是

硬脂酸。由表 5 可知, [OMIM] Br-水提取挥发油中共检测出 30 种成分, 占总量的 97.85%, 主要是脂肪酸类、醇类、酯类、酮类、酚类, 其中含量最高的是棕榈酸。

另外,以[BMIM] Br-水为溶剂提取出的挥发油数量比以水为溶剂提取出的少,可能是因为[BMIM] Br 离子液体烷基链过短,亲脂性不强,许多脂溶性成分未能溶出,两者共有成分有 4 种,分别为棕榈酸、植酮、亚油酸、月桂酸,其中前三者还是挥发油主要成分;随着 3 种离子液体加入及其阳离子基团中烷基链延长,所提取出的挥发油呈明显递增趋势,共有成分有 6 种,分别为棕榈酸、植酮、亚油酸、月桂酸、α-松油醇、植物醇,但相对含量有所差异;加入离子液体后,一些无法通过水提得到的挥发油也可被提取出。

表 4 「HMIM] Br-水提取马齿苋挥发油 GC-MS 分析结果

编号	保留时间/min	化合物	分子式	相对含量/%
1	10. 400	苯乙醛	C_8H_8O	0. 16
2	12. 059	芳樟醇	$C_{10}H_{18}O$	0.89
3	14. 741	α-松油醇	$C_{10}H_{18}O$	0.38
4	16. 960	壬酸	$\mathrm{C_9H_{18}O_2}$	0. 25
5	17. 595	bicyclo[3.3.0] octan-2-one,7-neopentylidene-	$\mathrm{C_{13}H_{20}O}$	0. 23
6	18. 190	4- 乙烯基-2-甲氧基苯酚	$\mathrm{C_9H_{10}O_2}$	0. 19
7	19. 546	2-乙烯基萘	$C_{12}H_{10}$	0. 21
8	23. 167	β-紫罗兰酮	$\mathrm{C_{13}H_{20}O}$	0. 20
9	24. 148	5-戊基-1,3-苯二酚	$C_{11}H_{16}O_2$	0.17
10	26. 045	月桂酸	$C_{12}H_{24}O_2$	1. 59
11	27. 274	E-环氧金合欢烯	$\mathrm{C_{15}H_{24}O}$	0.58
12	33. 233	肉蔻酸	$C_{18}H_{36}O_2$	1. 22
13	35. 665	i-propyl, 12-methyltetradecanoate	$\mathrm{C_{18}H_{36}O}$	0.50
14	36. 035	植酮	$\mathrm{C_{18}H_{36}O}$	9.75
15	36. 626	2-十五烷酮	$\mathrm{C_{15}H_{30}O}$	0. 24
16	36. 811	邻苯二甲酸(2-异丁基庚)酯	$C_{19}H_{28}O_4$	0.35
17	38. 736	棕榈酸甲酯	$C_{17}H_{34}O_2$	0.46
18	40. 086	棕榈酸	$C_{16}H_{32}O_2$	26. 52
19	40. 944	棕榈酸乙酯	$C_{18}H_{36}O_2$	0.74
20	42. 316	11,14-二十碳二烯酸甲酯	$C_{21}H_{38}O_2$	0.72
21	44. 592	植物醇	$C_{20}H_{40}O$	1. 24
22	45. 237	亚油酸	$C_{18}H_{32}O_2$	3. 94
23	45. 445	油酸	$C_{18}H_{34}O_{2}$	15. 53
24	46. 206	硬脂酸	$C_{18}H_{28}O_2$	27. 40
25	46. 779	19-去甲基-4-雄烯二醇	$\mathrm{C_{18}H_{28}O}$	3.66
26	49. 696	3-hydroxy-4-carboxy-2-methyl-6(7'-ethoxycarbonylheptyl) pyridine	$\mathrm{C_{17}H_{25}NO_5}$	0.62
27	49. 955	二十三烷	$C_{23}H_{48}$	0. 27

4 讨论与结论

传统的挥发油分离方法以水为溶剂,在高温下通过水蒸气蒸馏将其与药材其他成分分离,虽然水对亲水性物质具有良好的分离能力,但不能对亲油性物质直接分离。离子液体具有难挥发、稳定性好、耐高温等优良性能,以其辅助水蒸气蒸馏时,可分离水难以分离的成分,并可利用破壁效应来改善挥发油提取效果。

前期报道,棕榈酸可抑制巨噬细胞介导的结直肠癌上 皮间质转化,在体外以浓度依赖性方式降低了人前列腺癌

细胞的外泌体的分泌^[15];亚油酸可增加角质形成细胞的迁移程度,从而促进皮肤伤口愈合,抑制白血病细胞增殖^[16];油酸能促进人脂肪间充质干细胞增殖,维持细胞免疫表型,并且提高细胞三系分化潜能^[17];棕榈酸乙酯可通过降低肿瘤坏死因子和白介素-6 水平,降低肝脏组织核转录因子 NF-κB 表达,抑制髓过氧化物酶活性导致中性粒细胞浸润的减少,从而发挥抗炎作用来保护肝脏^[18]。本实验发现,提取溶剂不同,马齿苋挥发油成分组成及其含量、药理作用也有明显差异。研究挥发油成分的提取有利于挥

[HMIM] Br-水提取马齿苋挥发油 GC-MS 分析结果

表 5

编号	保留时间/min	化合物	分子式	相对含量/%
1	14. 899	α-松油醇	$C_{10}H_{18}O_{2}$	0. 10
2	16. 865	壬酸	$\mathrm{C_{10}H_{18}O}$	0. 12
3	22. 988	benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-	$C_{15}H_{22}$	0. 59
4	23. 928	β-没药烯	$C_{13}H_{20}O$	0. 19
5	24. 090	丁基羟基甲苯	$\mathrm{C_{15}H_{24}O}$	1. 16
6	25. 934	月桂酸	$C_{12}H_{24}O_2$	1. 29
7	26. 548	4,6,6-三甲基-2-(3-甲基-1,3-二丙烯)-3-氧三环[5.1.0.0(2,4)]辛烷	$\mathrm{C_{15}H_{22}O}$	0. 31
8	27. 207	E-环氧金合欢烯	$\mathrm{C_{15}H_{24}O}$	0.46
9	27. 497	azuleno[4,5-b] furan-2(3 <i>H</i>)-one,3a,4,6a,7,8,9,9a,9b-octahydro-6-methyl	$C_{15}H_{18}O_2$	0. 25
10	29. 679	芳樟醇	$C_{10}H_{18}O$	2. 62
11	30. 761	β-没药烯	$\mathrm{C_{15}H_{26}O}$	0. 23
12	32. 691	Z, E -2, 13-actadecadien-1-ol	$C_{18}H_{32}O$	0. 15
13	33. 129	肉蔻酸	$C_{14}H_{28}O_2$	0. 98
14	35. 561	i-propyl 12-methyltetradecanoate	$C_{18}H_{36}O_2$	0. 27
15	35. 767	醋酸植物酮	$C_{22}H_{42}O_2$	0. 19
16	35. 982	植酮	$\mathrm{C}_{18}\mathrm{H}_{36}\mathrm{O}$	11. 93
17	36. 787	棕榈酸	$C_{16}H_{32}O_2$	31. 19
18	38. 288	3,7,11,15-四甲基-2-十六碳烯-1-醇	$\mathrm{C}_{20}\mathrm{H}_{40}\mathrm{O}$	0. 95
19	38. 413	法尼基丙酮1	$\mathrm{C_{18}H_{30}O}$	0. 21
20	38. 684	14-甲基十五酸甲酯	$C_{17}H_{34}O_2$	0.42
21	39. 364	异植醇	$\mathrm{C}_{20}\mathrm{H}_{40}\mathrm{O}$	0.43
22	39. 991	邻苯二甲酸二异丁酯	$C_{16}H_{22}O_4$	0. 28
23	40. 890	棕榈酸乙酯	$C_{18}H_{36}O_2$	20. 22
24	44. 123	二十一烷	$C_{21}H_{44}$	0. 28
25	44. 525	植物醇	$\mathrm{C}_{20}\mathrm{H}_{40}\mathrm{O}$	0.60
26	45. 144	亚油酸	$C_{18}H_{32}O_2$	3. 55
27	46. 063	硬脂酸	$C_{18}H_{36}O_2$	9. 43
28	47. 075	3-乙基-5-(2-乙基丁基)-十八烷	$C_{26}H_{54}$	8. 48
29	47. 383	乙酸正辛酯	$C_{20}H_{40}O_2$	0. 50
30	51. 440	棕榈酸油酰酯	$C_{34}H_{64}O_2$	0.47

表 6 不同提取溶剂中马齿苋挥发油共有成分相对含量 (%)

编号	化合物	水	[BMIM]Br-水	[HMIM] Br-水	[OMIM]Br-zk
1	棕榈酸	51. 11	26. 27	26. 52	31. 19
2	植酮	14. 92	9. 56	9. 75	11. 93
3	硬脂酸	2.38	_	27. 40	9. 43
4	亚油酸	3. 63	18.68	3. 94	3. 55
5	亚麻酸乙酯	12. 18	_	_	_
6	3,7,11,15-四甲基-2-十六碳烯-1-醇	2. 37	_	_	0. 95
7	2,2'-亚甲基双(4-甲基-6-叔丁基)苯酚	3.96	_	_	_
8	法尼基丙酮	1. 23	_	_	0. 21
9	月桂酸	0.41	1. 28	1. 59	1. 29
10	二十一烷	0.74	_	_	0. 28
11	异植醇	_	_	_	0. 43
12	α-松油醇	_	1. 94	0.38	0. 10
13	木香烯内酯	_	1. 76	_	_
14	油酸	_	29. 25	15. 53	_
15	植物醇	_	2. 66	1. 24	0.60
16	硬脂酸酯乙烯基	_	3. 12	_	_
17	芳樟醇	_	_	0. 89	2. 62
18	壬酸	_	_	0. 25	0. 17
19	E-环氧金合欢烯	_	_	0. 58	0. 46
20	肉蔻酸	_	_	1. 22	0. 98
21	棕榈酸乙酯	_	_	0. 74	20. 22

发油应用。

结果显示,以离子液体和水为混合溶剂时,前者可增加马齿苋挥发油提取率,其中[OMIM]Br⁻水所提取出的挥发油成分最多,有助于该类成分的提取。

参考文献:

- [1] 徐雁南. 离子液体在有机合成中的拓展研究[D]. 上海: 华东师范大学, 2010.
- [2] 王昊迪. 离子液体的性质及研究进展[J]. 当代化工研究, 2019(1): 121-122.
- [3] 冯 靖,彭效明,李翠清,等. 离子液体在提取天然产物活性物质中的应用[J]. 应用化工,2019,48(4):945-949.
- [4] Lin H M, Zhang Y G, Han M, et al. Aqueous ionic liquid based ultrasonic assisted extraction of eight ginsenosides from ginseng root [J]. Ultrason Sonochem, 2013, 20(2): 680-684.
- [5] 李兰杰,李绪文,丁 健,等. 超声辅助结合离子液体双水相提取-高效液相色谱法测定三七中5种稀有人参皂苷的含量[J]. 高等学校化学学报,2016,37(3):454-459.
- [6] 卢彩会, 牟德华. 离子液体 [BMIM] PF₆ 酶法辅助提取姜 黄挥发油工艺优化及成分分析[J]. 食品科学, 2017, 38 (10): 264-271.
- [7] 冯靖,彭效明,李翠清,等. 离子液体在提取天然产物活性物质中的应用[J]. 应用化工,2019,48(4):
- [8] 周惠燕,陈 珏,徐蓓华.离子液体提取金银花中绿原酸的研究[J].上海中医药杂志,2018,52(5):83-86.
- [9] 国家药典委员会. 中华人民共和国药典: 2020 年版一部 [S]. 北京: 中国医药科技出版社, 2020: 51.

- [10] 胡一梅,葛一漫,王 华,等. 马齿苋挥发油对辣椒素诱导瘙痒相关胞内通路的影响[J]. 世界科学技术(中医药现代化),2016,18(7):1199-1205.
- [11] 李鹏飞,苗明三. 马齿苋的现代研究及临床应用[J]. 中医学报,2014,29(9):1342-1344.
- [12] Jin T Y, Shen T, Zhou M X, et al. Chemical constituents from Portulaca oleracea and their bioactivities [J]. J Chin Pharmaceut Sci, 2016, 25(12): 898-905.
- [13] 唐一梅,张 博,房海娜,等. 离子液体辅助提取石菖蒲挥发油的工艺研究[J]. 西北大学学报(自然科学版),2018,48(3):393-398.
- [14] 李 佳,刘红燕,张永清,等. 顶空固相微萃取-气质色谱联用技术分析海州香薷与石香薷中挥发性成分[J]. 中国实验方剂学杂志,2013,19(16):118-122.
- [15] de Araujo Junior R F, Eich C, Jorquera C, et al. Ceramide and palmitic acid inhibit macrophage-mediated epithelial-mesenchymal transition in colorectal cancer [J]. Mol Cell Biochem, 2020, 468(1-2): 153-168.
- [16] Prommaban A, Utama-Ang N, Chaikitwattana A, et al. Linoleic acid-rich guava seed oil: Safety and bioactivity [J]. Phytother Res, 2019, 33(10): 2749-2764.
- [17] 李锦灵,林立龙,李治寰.不饱和脂肪酸对人脂肪间充质于细胞生物学特性的影响[J].生命科学研究,2021,25(1):15-23;52.
- [18] Saeed N M, El-Demerdash E, Abdel-Rahman H M, et al. Antiinflammatory activity of methyl palmitate and ethylpalmitate in different experimental rat models [J]. Toxicol Appl Pharmacol, 2012, 264(1): 84-93.

HPLC 法同时测定枸杞配方颗粒中 4 种成分

毛琼丽^{1,2}, 胡 杨^{1,2}, 田有余¹, 刘 洋^{1,2}, 石 豪¹, 严 玲¹, 李先芝¹, 陈彦和^{1,2} (1. 劲牌有限公司,湖北 大冶 435112; 2. 中药保健食品质量与安全湖北省重点实验室,湖北 大冶 435112)

摘要:目的 建立 HPLC 法同时测定枸杞配方颗粒中 4 种成分的含量。方法 该药物甲醇提取液的分析采用 Waters T3 色谱柱(4.6 mm×250 mm,5 μ m);流动相乙腈-0.1% 磷酸,梯度洗脱;体积流量 1.0 mL/min;柱温 30 $^{\circ}$;检测波长 270 nm。结果 5-羟甲基糠醛、对香豆酸、芦丁、肉桂酸在各自范围内线性关系良好(r>0.999 9),平均加样回收率 100.7%~102.0%,RSD 0.56%~1.73%。结论 该方法重复性好,稳定可靠,可用于枸杞配方颗粒的质量控制。

关键词: 枸杞配方颗粒; 5-羟甲基糠醛; 对香豆酸; 芦丁; 肉桂酸; HPLC

中图分类号: R927.2 文

文献标志码: B

文章编号: 1001-1528(2023)05-1619-03

 $\textbf{doi:}\,10.\,\,3969/j.\,issn.\,1001\text{--}1528.\,\,2023.\,\,05.\,\,038$

收稿日期: 2022-11-04

基金项目: 湖北省重点研发计划项目 (2021ACA004)

作者简介: 毛琼丽 (1982—), 女, 执业药师, 研究方向为产品质量控制。E-mail: 95358226@ qq.com