双叶枇杷颗粒水提工艺优化

毛小文1, 顾志荣2*, 王园园1, 葛 斌2*

(1. 甘肃中医药大学药学院,甘肃 兰州 730000; 2. 甘肃省人民医院药剂科,甘肃 兰州 730000)

摘要:目的 优化双叶枇杷颗粒水提工艺。方法 在单因素试验基础上,以浸泡时间、加水量、提取时间和提取次数为影响因素,芦丁、黄芩苷、黄芩素、汉黄芩素、丹皮酚、毛蕊花糖苷、柚皮苷、甘草酸单铵盐、总黄酮含量及出膏率为评价指标,主成分分析和熵权 TOPSIS 计算权重系数,Box-Behnken 响应面法优化水提工艺。结果 2 种模型所得综合排序一致。最佳条件为饮片浸泡 1 h 后加 14 倍量水提取 1 h,共 3 次,各成分含量及出膏率 RSD 均小于 2.52%。结论 该方法稳定、简便、可行,可为后续相关制剂开发提供参考。

关键词:双叶枇杷颗粒;水提工艺;主成分分析;熵权 TOPSIS; Box-Behnken 响应面法

中图分类号: R284.2 文献标志码: B 文章编号: 1001-1528(2024)09-3093-06

doi:10.3969/j.issn.1001-1528.2024.09.041

痤疮是一种影响毛囊皮脂腺单位的慢性炎症性疾病,好发于面部、胸部及背部,临床表现以粉刺、炎性丘疹、结节囊肿等多形性皮损为特点,易形成色素沉着和瘢痕遗留^[1],其中寻常痤疮最困扰青少年类人群,发病率预计为9.38%^[2],并且呈逐年上升趋势,目前已成为全球第八大流行疾病^[3],该病在青春期的发病率高,影响着我国50%~86%的青少年^[4]。西医常采用维甲酸、抗生素、糖皮质激素、抗雄性激素等手段治疗痤疮,虽然疗效显著,但易产生耐药性和复发^[5];中医遵循辨证论治、整体治疗的原则,常以中药复方联合针刺、拔罐、面膜等进行综合治疗,疗效稳定,安全可靠^[6]。

双叶枇杷饮是甘肃省人民医院临床经验方,由桑叶、枇杷叶、酒黄芩、牡丹皮、地黄、枳壳、甘草 7 味中药组成,具有清肺泻热、凉血消痤功效,已在临床使用二十余年,疗效显著,安全性好,但原方存在煎煮时间、服药体积、服用次数可控性差的缺点,故拟将其开发成颗粒剂以便于临床使用。提取工艺是双叶枇杷颗粒开发的核心环节,为使该制剂符合传统工艺,课题组前期结合目前临床实际应用情况采用水提工艺,而本实验对其进一步优化,以期为相关制剂开发提供技术参考。

1 材料

1.1 仪器 LC-16 型高效液相色谱仪,配置 SPD-16 型紫外可见检测器,购自日本岛津公司;UV8100A 型紫外可见分光光度计,购自莱伯泰科仪器(北京)有限公司;BT125D型电子天平(万分之一),购自赛多利斯科学仪器(北京)有限公司;DD-5M型低速离心机,购自湘仪离心机仪器有限公司。

1.2 药材 桑叶(批号220301A,产地广东)、枇杷叶(批号220101A,产地四川)、酒黄芩(批号220101A,产地四川)、酒黄芩(批号220101A,产地山西)、牡丹皮(批号220501A,产地安徽)、地黄(批号220101A,产地河南)、枳壳(批号210801A,产地江西)、甘草(批号211201A,产地甘肃)饮片均由冠兰中药饮片(甘肃)有限公司提供,经甘肃省人民医院药剂科郑修丽主任中药师鉴定为正品,符合2020年版《中国药典》一部相关规定。

1.3 试剂 毛蕊花糖苷 (批号 CHB211109)、柚皮苷 (批号 CHB201202)、芦丁 (批号 CHB201103)、黄芩苷 (批号 CHB201101)、丹皮酚 (批号 CHB201230)、黄芩素 (批号 CHB201102)、汉黄芩素 (批号 CHB201227)、甘草酸单铵盐 (批号 CHB201106) 对照品均购自成都克洛玛生物科技有限公司,纯度≥98%。甲醇、乙腈、磷酸、甲酸均为色谱纯,购自天津市大茂化学试剂厂;水为纯化水。

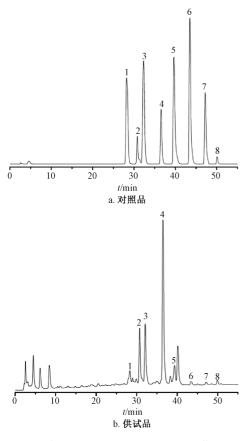
2 方法与结果

2.1 提取液制备 参考文献 [7] 报道,称取桑叶 10 g、枇杷叶 10 g、酒黄芩 10 g、牡丹皮 10 g、地黄 15 g、枳壳 10 g、甘草 5 g,加入一定量纯化水,武火加热至沸腾后文火煎煮一定时间,300 目尼龙筛趁热过滤,滤液浓缩并定容至 250 mL量瓶中,即得浓缩液,精密吸取 50 mL,置于恒重 250 mL干燥蒸发皿中,水浴蒸干,在 60 ℃下真空干燥 72 h,即得。

2.2 指标成分含量测定 采用 HPLC 法。

2.2.1 色谱条件 WondaSil C₁₈-WR 色谱柱 (4.6 mm×150 mm, 5 μm); 流动相甲醇 (A) -水 (含 0.1% 磷酸, B), 梯度洗脱 (8% ~ 75% A, 0~55 min); 体积流量 0.8 mL/

收稿日期: 2023-08-03


基金项目: 甘肃省人民医院研发攻关项目 (18GSSY2-3)

作者简介:毛小文(1995—),男(回族),硕士,研究方向为中药炮制与制药工艺。E-mail: mxw2418@163.com

* **通信作者**:顾志荣 (1988—),男,副主任中药师,研究方向为中药药效物质及作用机制。E-mail: guzr8817@ 163.com

葛 斌 (1965—), 男, 主任药师, 研究方向为中药制剂开发。E-mail: gjy0630@163.com

min; 柱温 30 ℃; 检测波长 210 nm; 进样量 10 μ L。色谱 图见图 1。

1. 毛蕊花糖苷
 2. 柚皮苷
 3. 芦丁
 4. 黄芩苷
 5. 丹皮酚
 6. 黄芩素
 7. 汉黄芩素
 8. 甘草酸单铵盐

图 1 各成分 HPLC 色谱图

- 2.2.2 对照品溶液制备 精密称取毛蕊花糖苷、柚皮苷、芦丁、黄芩苷、丹皮酚、黄芩素、汉黄芩素、甘草酸单铵 盐对照品适量,甲醇超声溶解并定容至 25 mL 量瓶中,配制成质量浓度分别为 0.06、0.15、0.15、0.30、0.02、0.03、0.02、0.01 mg/mL 的溶液,即得。
- 2.2.3 供试品溶液制备 精密吸取 "2.1" 项下浓缩液 10 mL, 置于具塞锥形瓶中, 加入 15 mL 甲醇, 密塞, 称定质量, 超声提取 1 h, 放冷, 甲醇补足减失的质量, 4 000 r/min离心 10 min, 静置, 取上清液, 过 0.45 μm 微孔滤膜, 即得。

2.2.4 方法学考察

- 2.2.4.1 线性关系考察 精密吸取 "2.2.2" 项下对照品溶液 适量,依次稀释 1、2、5、10、20、30 倍,在 "2.2.1" 项色谱条件下进样测定。以对照品峰面积为纵坐标 (Y),质量浓度为横坐标 (X) 进行回归,结果见表 1,可知各成分在各自范围内线性关系良好。
- 2.2.4.2 精密度试验 精密吸取 "2.2.2" 项下对照品溶液适量,在 "2.2.1" 项色谱条件下进样测定 6 次,测得毛蕊花糖苷、柚皮苷、芦丁、黄芩苷、丹皮酚、黄芩素、汉黄芩素、甘草酸单铵盐峰面积 RSD 分别为 1.41%、1.27%、

0.79%、1.86%、0.98%、1.34%、1.53%、1.24%, 表明 仪器精密度良好。

表 1 各成分线性关系

	同山土和		线性范围/
成分	回归方程	r	$(mg \cdot mL^{-1})$
毛蕊花糖苷	$Y = 2.09 \times 10^7 X - 3.93 \times 10^4$	0. 999 8	0.002~0.060
柚皮苷	$Y = 2.45 \times 10^7 X - 4.63 \times 10^5$	0.9997	0.040~0.150
芦丁	$Y = 3.45 \times 10^7 X - 2.36 \times 10^3$	0. 999 8	$0.005 \sim 0.150$
黄芩苷	$Y = 3.63 \times 10^7 X + 2.05 \times 10^5$	0. 999 7	0.075~0.300
丹皮酚	$Y = 6.77 \times 10^7 X - 4.53 \times 10^5$	0. 999 8	0.005 ~ 0.020
黄芩素	$Y = 9.08 \times 10^7 X - 1.87 \times 10^5$	0.9997	0. 001 ~ 0. 030
汉黄芩素	$Y = 9.02 \times 10^7 X + 9.28 \times 10^3$	0.9997	0. 001 ~ 0. 020
甘草酸单铵盐	$Y = 1.75 \times 10^7 X - 1.85 \times 10^4$	0. 999 8	0.005~0.010

- 2.2.4.3 稳定性试验 精密吸取本品 (编号 S25) 6 份, 按 "2.2.3" 项下方法制备供试品溶液, 于 0、2、4、8、12、24 h 在 "2.2.1" 项色谱条件下进样测定, 测得毛蕊花糖苷、柚皮苷、芦丁、黄芩苷、丹皮酚、黄芩素、汉黄芩素、甘草酸单铵盐峰面积 RSD 分别为 1.95%、2.01%、1.67%、1.93%、1.46%、1.20%、0.97%、1.58%, 表明溶液在 24 h 内稳定性良好。
- 2.2.4.4 重复性试验 精密吸取本品 (编号 S25) 6 份,按 "2.2.3" 项下方法制备供试品溶液,在 "2.2.1" 项色谱条件下进样测定,测得毛蕊花糖苷、柚皮苷、芦丁、黄芩苷、丹皮酚、黄芩素、汉黄芩素、甘草酸单铵盐峰面积RSD 分别为 1.55%、1.20%、1.05%、1.36%、1.28%、0.85%、0.93%、1.16%,表明该方法重复性良好。
- 2.2.4.5 加样回收率试验 精密吸取各成分含量已知的本品 (编号 S25) 6 份,每份 0.5 mL,加入一定量对照品,按"2.2.3"项下方法制备供试品溶液,在"2.2.1"项色谱条件下进样测定,计算回收率。结果,毛蕊花糖苷、柚皮苷、芦丁、黄芩苷、丹皮酚、黄芩素、汉黄芩素、甘草酸单 铵 盐 平 均 加 样 回 收 率 分 别 为 98.35%、99.82%、99.24%、100.12%、100.31%、99.67%、101.08%、100.45%,RSD 分别为 2.31%、1.90%、1.52%、1.87%、2.52%、2.16%、2.33%、1.86%。
- 2.3 总黄酮含量测定 采用分光光度法。
- 2.3.1 对照品溶液制备 精密称定芦丁对照品 5.00 mg, 55% 乙醇溶解并定容至 25 mL量瓶中,即得。
- 2.3.2 供试品溶液制备 精密吸取水煎液 3.6 mL,置于50 mL 三角瓶中,沿壁缓缓加入无水乙醇,边加边振摇,沉淀完全后 4 000 r/min 离心 10 min 除杂,取上清液,回收溶剂至干,加纯水溶解,置于 25 mL 量瓶中,纯水定容至刻度,过 0.45 μm 微孔滤膜,即得。
- 2.3.3 检测波长选择 参考文献 [8] 报道,取 "2.3.1" 项下对照品溶液、"2.3.2" 项下供试品溶液、55% 乙醇(空白对照)各1 mL,进行全波长扫描,发现在508 nm 波长处有最大吸收。
- 2.3.4 线性关系考察 分别精密吸取 "2.3.1" 项下对照 品溶液 0.5、1.0、1.5、2.0、2.5、3.0、3.5 mL, 置于 10

mL量瓶中,按"2.3.3"项下方法测定吸光度。以对照品质量浓度为横坐标(X),吸光度为纵坐标(A)进行回归,得方程为A=12.54X-0.0069(r=0.9998),可知芦丁在0.01~0.07 mg/mL范围内线性关系良好。

2.3.5 方法学考察 取本品 (编号 S25) 适量,进行精密 度、稳定性 (24 h 内)、重复性、加样回收率试验,测得 其 RSD 均小于 2.00%,平均加样回收率为 100.39%,表明 仪器精密度、方法重复性、溶液稳定性良好。

2.4 水提工艺优化

2.4.1 浸泡时间、吸水率筛选 按处方量称取饮片 70 g, 平行 6 份, 置于相同规格烧杯中,分别浸泡 30、60、90、120、150、180 min, 计算吸水率,公式为吸水率= [(复方湿重-复方干重)/复方干重]×100%,结果见图 2。由此可知,吸水率在浸泡 90 min 前一直处于上升趋势,90 min 后趋于稳定。

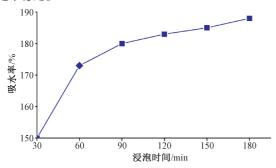


图 2 浸泡时间对吸水率的影响

2.4.2 单因素试验 以总黄酮含量和出膏率为评价指标, 分别对浸泡时间、加水量、提取时间、提取次数进行单因 素试验,结果见图 3~6。

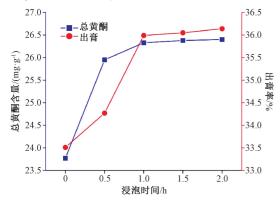


图 3 浸泡时间对总黄酮含量、出膏率的影响

2.4.3 Box-Behnken 响应面法 在单因素试验基础上,以 浸泡时间 (A)、加水量 (B)、提取时间 (C)、提取次数 (D) 为影响因素,芦丁 (X_1) 、黄芩苷 (X_2) 、黄芩素 (X_3) 、汉 黄芩素 (X_4) 、丹皮酚 (X_5) 、毛蕊花糖苷 (X_6) 、柚皮苷 (X_7) 、甘草酸单铵盐 (X_8) 、总黄酮 (X_9) 含量和出膏率 (X_{10}) 为评价指标,设计 29 组试验,结果见表 2。

2.5 优化工艺筛选

2.5.1 主成分分析 参考文献 [9] 报道。

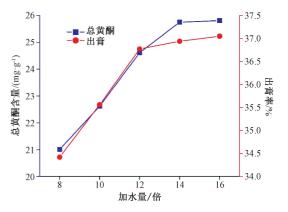


图 4 加水量对总黄酮含量、出膏率的影响

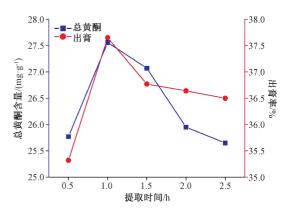


图 5 提取时间对总黄酮含量、出膏率的影响

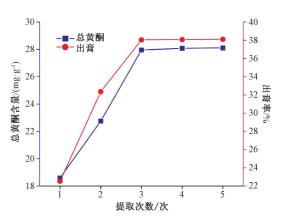


图 6 提取次数对总黄酮含量、出膏率的影响

2.5.1.1 主成分得分计算 A_{ik} 为第 i (i=1, 2, …, m) 个指标的第 k (k=1, 2, …, n) 个主成分因子载荷, λ_k 为第 k 个主成分的初始特征值,根据式 (1) 计算主成分 F_{ik} 得分。

$$F_{ik} = \frac{A_{ik}}{\sqrt{\lambda_k}} \tag{1}$$

2.5.1.2 主成分得分系数计算 S_k 为第 k (k=1, 2, …, n) 个提取载荷平方和的方差贡献率,根据式 (2) 计算得分系数 Y_k 。

$$Y_{ik} = \frac{F_{ik} \times S_k}{\sum_{k=1}^{n} S_k} \tag{2}$$

Vol. 46 No. 9

表 2 Box-Behnken 响应面法设计与结果

	A 浸泡	R hnak	C 提取时D 提取次──											
试验号	时间/h	量/倍	间/h	数/次	X_1 芦丁	X ₂ 黄芩苷	X_3 黄芩素	X ₄ 汉黄	X_5 丹皮酚	X ₆ 毛蕊	X ₇ 柚皮苷	X ₈ 甘草酸	X_9 总黄酮	X10出膏率/%
			1.0		0.770.5	1 615 0	0.010.6	芩素	0.121.2	花糖苷	0.000.4	单铵盐	22 052 0	22.02
S1	1.5	14	1.0	2	0. 778 5	1. 615 8	0.018 6	0.008 9	0. 131 2	0. 303 3	0.8904	0. 058 1	23. 852 0	33. 93
S2	0. 5	14	0. 5	3	0. 874 5	1. 779 4	0.0146	0.009 8	0. 139 1	0. 380 7	0.8908	0.0504	23. 029 6	33. 62
S3	1.0	14	1.5	2	0. 368 5	0. 891 7	0.009 1	0.0047	0.0717	0. 168 2	0.405 0	0. 028 4	20. 637 4	29. 65
S4	1. 5	14	1. 5	3	0. 685 5	1. 727 4	0.017 0	0.007 1	0. 139 7	0. 330 8	0. 774 6	0.0609	24. 920 3	39. 13
S5	1. 5	14	1.0	4	0. 883 5	2. 023 1	0.018 6	0.0109	0. 151 0	0. 472 1	0. 942 7		27. 217 9	43. 93
S6	1.0	16	0.5	3	0. 869 8	1. 975 0	0.0189	0.0119	0. 157 2	0. 369 8	0.9196		24. 063 0	39. 69
S7	1.0	12	1. 5	3	0.6628	1.844 1	0.017 2	0.007 8	0. 138 0	0. 420 3	0.723 2	0.065 8	25. 581 5	40. 51
S8	1.0	14	0. 5	2	0. 320 7	1.005 9	0.0148	0.0067	0. 104 3	0. 287 2	0. 359 9	0.044 8	19. 625 5	29. 05
S9	0. 5	14	1.0	2	0. 721 7	1. 591 8	0.015 7	0.0074	0. 125 9	0. 139 0	0.7908	0.048 2	22. 762 2	33. 32
S10	1.0	14	0.5	4	0.6865	1.773 2	0.016 5	0.0080	0.1363	0.3760	0.753 3	0.0623	22. 830 3	36. 34
S11	0.5	12	1.0	3	0.7487	1.8419	0.0160	0.007 2	0.132 6	0.4122	0.803 5	0.052 5	24. 340 4	38. 79
S12	1.0	16	1.5	3	0.750 1	1.8474	0.0196	0.0096	0.148 9	0.425 6	0.8474	0.0692	27. 153 1	40. 59
S13	1.5	16	1.0	3	0.8265	1. 995 7	0.023 0	0.0127	0. 163 5	0.4739	0.837 6	0.0760	25. 527 2	40. 56
S14	1.0	14	1.5	4	0.8245	2.049 4	0.0192	0.013 2	0.1504	0.4167	0.8617	0.0625	24. 940 2	41. 28
S15	0.5	14	1.5	3	0.5872	1. 491 7	0.0080	0.0066	0.0998	0. 278 7	0.615 5	0.0230	23. 162 5	35. 90
S16	1.0	14	1.0	3	0.8673	2.028 2	0.0188	0.0107	0.147 0	0.4816	0.8701	0.079 1	24. 553 1	38. 26
S17	1.0	12	0.5	3	0.8440	1.9529	0.0172	0.0100	0. 147 4	0.4062	0.8909	0.056 1	24. 521 5	36. 22
S18	1.0	14	1.0	3	0.8593	1. 994 1	0.0205	0.0076	0. 141 6	0.4787	0.8734	0.0747	24. 800 5	37. 60
S19	1.0	14	1.0	3	0. 882 7	2.029 3	0.0223	0.0126	0.1543	0.4812	0.8943	0.0805	25. 817 7	39. 71
S20	1.0	16	1.0	2	0.7607	1. 329 9	0.0180	0.0078	0.1420	0.4310	0.9137	0.0650	22. 363 4	36. 21
S21	1.0	12	1.0	4	0. 851 3	1.923 7	0.0138	0.0102	0.065 4	0.4173	0.6078	0.0544	24. 157 7	39. 84
S22	0.5	14	1.0	4	0.8542	1.965 0	0.0179	0.0101	0. 149 4	0.4697	0.9068	0.075 8	26. 847 4	42. 24
S23	1.0	14	1.0	3	0.8640	2.0060	0.0193	0.0089	0. 145 3	0.4780	0.8689	0.0767	26. 234 4	38. 46
S24	1.0	12	1.0	2	0.7512	1. 367 2	0.0183	0.0044	0.1528	0. 289 3	0.8039	0.063 1	22. 114 2	33. 16
S25	1.5	14	0.5	3	0. 928 4	1.929 6	0.0228	0.013 1	0.148 6	0. 389 5	0.9724	0.0597	23. 715 8	35. 56
S26	0.5	16	1.0	3	0. 781 1	1. 940 4	0.0211	0.0100	0.149 0	0. 453 8	0.8448	0.0628	25. 081 4	39. 90
S27	1.0	14	1.0	3	0. 871 2	2. 022 5	0.0214	0.0113	0.1502	0. 482 0	0.8861	0. 081 6	25. 709 3	39. 06
S28	1.5	12	1.0	3	0. 799 2	1. 946 2	0.0215	0.0102	0.1601	0.4390	0.8414	0.0661	25. 191 1	40. 26
S29	1.0	16	1.0	4	0. 844 7	1. 945 6	0.0188	0.0090	0.144 6	0. 441 8	0.8943	0.0564	26. 842 4	41. 92

2.5.1.3 综合得分系数计算及归一化 根据式 (3) 计算综合得分系数 Y'_{ik} , 式 (4) 进行归一化,即得每个指标变量的权重系数 W'_{ik} 。

$$Y'_{ik} = \sum_{k=1}^{n} Y_{ik}$$
 (3)

$$W'_{ik} = \frac{Y'_{ik}}{\sum_{i}^{m} Y'_{ik}} \tag{4}$$

2.5.1.4 结果分析 主成分特征值及方差贡献率见表 3, 初始因子载荷矩阵见表 4, 权重见表 5。以特征值>1为提取标准,得到1个主成分,解释了70.905%的方差,表明它在评价体系中占主导作用,故选择其进行分析。

2.5.2 熵权 TOPSIS

2.5.2.1 归一化 将表 2 数据进行归一化后建立 TOPSIS 模型 $^{[10]}$,根据式 (5) 计算第 i $(i=1, 2, \cdots, m)$ 个样本的第 j $(j=1, 2, \cdots, n)$ 个指标下的测量值 X_{ij} 。

$$X'_{ij} = \frac{X_{ij} - X_{\min}}{X_{\max} - X_{\min}}$$
 (5)

2.5.2.2 信息熵客观赋权 参考文献 [11] 报道,将原始数据转化为概率矩阵P,根据式 (6) 计算第j个指标下第i

表 3 主成分特征值及方差贡献率

主成分	λ	方差贡献率/%	累积方差贡献率/%
1	7. 090	70. 905	70. 905
2	0. 979	9. 791	80. 695
3	0.616	6. 161	86. 856
4	0. 529	5. 289	92. 145
5	0. 308	3. 082	95. 226
6	0. 182	1. 823	97. 049
7	0. 105	1. 052	98. 101
8	0.097	0. 970	99. 071
9	0.075	0.754	99. 825
10	0.018	0. 175	100.000

表 4 初始因子载荷矩阵

 因子	 载荷	因子	 载荷
X_1	0. 881	X_6	0. 846
X_2	0. 917	X_7	0. 859
X_3	0.831	X_8	0.857
X_4	0.764	X_9	0. 846
X_5	0. 789	X_{10}	0.819

表 5 各指标权重

评价指标	W'_{ik}	评价指标	W'_{ik}
X_1	0.1048	X_6	0. 100 6
X_2	0.1090	X_7	0. 102 2
X_3	0.0988	X_8	0. 101 9
X_4	0.0909	X_9	0. 100 6
X_5	0.093 8	X_{10}	0. 097 4

个样本的概率 P_{ij} 。根据式 (7) 各指标信息熵 H_j ,其数值越小,指标数据离散程度越高,信息量就越大,结果分别为 0.978 0、0.975 6、0.974 5、0.959 6、0.976 2、0.973 7、0.977 1、0.974 2、0.972 5、0.966 8。根据式 (8) 计算权重系数,结果见表 6。

$$P_{ij} = X_{ij} / \sum_{i=1}^{m} X_{ij}$$
 (6)

$$Hj = -k \sum_{i=1}^{m} P_{ij} \ln P_{ij}, \quad k = 1/\ln m$$
 (7)

$$W_{j} = (1 - H_{j}) / \sum_{j=1}^{n} (1 - H_{j})$$
 (8)

表 6 各指标权重系数

评价指标	W_{j}	评价指标	W_j
X_1	0.0809	X_6	0. 096 6
X_2	0. 089 9	X_7	0. 084 4
X_3	0.093 6	X_8	0.0950
X_4	0. 148 5	X_9	0. 101 2
X_5	0.087 6	X ₁₀	0. 122 3

2.5.2.3 加权决策矩阵构建 根据式 (9) 计算各指标加权决策矩阵。

$$R_{ij} = X'_{ij} \times W_j \tag{9}$$

2.5.2.4 最优、最劣方案确定 根据加权决策矩阵,得到最优方案 $Z^+ = \max \ (R_{1j}, \ R_{2j}, \ \cdots, \ R_{nj})$ 和最劣方案 $Z^- = \min \ (R_{1j}, \ R_{2j}, \ \cdots, \ R_{nj})$ 。

min(R_{1j} , R_{2j} , …, R_{nj})。
2.5.2.5 贴近度计算及评价 分别根据式(10)和(11)计算正理想解距离 D_i^* 和负理想解距离 D_i^* ,再根据式(12)计算最优解欧氏贴近度 C_i ,最终进行排序,结果见表 7。由此可知,主成分分析、熵权 TOPSIS 所得排序基本一致,表明两者均可用于工艺优化;最优工艺均为 S19,即饮片浸泡 1 h 后加 14 倍量水提取 1 h,共 3 次。

$$D_{i}^{+} = \sqrt{\sum_{i=1}^{j} (Rij - Z^{+})^{2}}$$
 (10)

 $D_{i}^{-} = \sqrt{\sum_{i=1}^{j} (Rij - Z^{-})^{2}}$ (11)

$$C_{i} = \frac{D_{i}^{-}}{D_{i}^{-} + D_{i}^{+}} \tag{12}$$

表 7 各样品排序结果

	~	к, плини	71 -11 //	
排序 -	主成	分分析	熵权	TOPSIS
升F/力* =	样品	综合评分	样品	C_i
1	S19	0.909 3	S19	0.8698
2	S5	0.9084	S13	0.8667
3	S13	0.893 2	S5	0. 852 1
4	S27	0.8785	S27	0.824 1
5	S22	0.8596	S14	0.8163
6	S14	0.8262	S22	0.8024
7	S16	0.8243	S28	0.770 6
8	S23	0.8228	S6	0.7697
9	S28	0.8116	S16	0.763 6
10	S25	0.8057	S12	0.752 3
11	S29	0. 799 9	S26	0.748 9
12	S6	0.798 5	S25	0.735 0
13	S12	0.795 0	S29	0.732 8
14	S26	0.788 0	S23	0.731 5
15	S18	0.7847	S17	0. 671 1
16	S17	0.723 3	S18	0.6708
17	S7	0.685 3	S7	0. 638 9
18	S11	0.6408	S21	0. 588 7
19	S2	0.6309	S11	0. 582 7
20	S4	0.627 3	S2	0.5808
21	S20	0.625 6	S4	0. 577 8
22	S1	0.6120	S20	0.5668
23	S10	0.6007	S1	0.5654
24	S21	0.595 0	S10	0. 558 5
25	S24	0.5182	S24	0.440 9
26	S9	0. 459 9	S9	0.428 2
27	S15	0. 333 4	S15	0. 344 7
28	S8	0. 197 8	S8	0. 248 4
29	S3	0.0674	S3	0.8667
			<u> </u>	

2.6 验证试验 取饮片适量,按 "2.1"项下方法制备提取液,"2.2.3"项下方法制备供试品溶液,根据"2.5.2.5"项下优化工艺进行5批验证试验,结果见表8。由此可知,该工艺稳定可靠,重复性良好。

表 8 验证试验结果 (n=5)

试验号	含量/(mg·g ⁻¹)								出膏率/%	
以亚 5	芦丁	黄芩苷	黄芩素	汉黄芩素	丹皮酚	毛蕊花糖苷	柚皮苷	甘草酸单铵盐	总黄酮	山育平/70
YZ1	0. 878 2	1. 996 7	0.022 6	0. 012 5	0. 154 3	0.478 3	0. 893 9	0. 081 4	25. 757 5	41. 03
YZ2	0.8857	2.018 3	0.023 6	0.0124	0.1620	0.486 1	0.8817	0.0806	25. 827 7	40. 76
YZ3	0.8667	2.029 8	0.023 3	0.0122	0.1598	0.473 5	0.8922	0.079 1	25. 932 3	40. 17
YZ4	0.8645	2.017 5	0.0229	0.0127	0. 163 7	0.4766	0.8995	0.0788	25.700 3	40. 62
YZ5	0.8839	2. 025 2	0.023 6	0.0121	0. 156 7	0.4838	0.883 1	0.0762	25. 211 6	39. 53
RSD/%	1. 11	0.63	1.90	1. 93	2.40	1.08	0.85	2. 52	1.09	1.45

3 讨论

双叶枇杷颗粒药味复杂,成分多样,理化性质各异,

是多组分物质共同发挥作用的结果。方中桑叶、枇杷叶轻清人肺, 疏散肺热, 为君药; 黄芩人肺与大肠经, 清热泻

火,助桑叶、枇把叶之力,为臣药;牡丹皮、地黄滋阴凉血散瘀,枳壳行气散滞,共为佐药;甘草既解毒,又调和诸药,为使药。本实验在选取评价指标时,从活性成分与质量控制成分 2 个方面综合考虑。芦丁是君药桑叶的活性物质及指标成分,黄芩苷、黄芩素、汉黄芩素是臣药黄芩的活性物质及指标成分,丹皮酚、柚皮苷、甘草酸分别是牡丹皮、枳壳、甘草的活性物质及指标成分,并且芦丁、黄芩苷、黄芩素、汉黄芩素、丹皮酚、毛蕊花糖苷、柚皮苷、甘草酸等具有抗菌、消炎、抗氧化等药理作用[12],丹皮酚具有解热作用[16],毛蕊花糖苷具有缓解特应性皮炎的作用[17],甘草酸具有增强免疫力的作用[18]。故本实验选择芦丁、黄芩苷、黄芩素、汉黄芩素、丹皮酚、毛蕊花糖苷、柚皮苷、甘草酸单铵盐含量及出膏率作为评价指标,并且上述 8 种成分中有6种为黄酮类,故将总黄酮也纳入评价指标。

同时,本实验考察了不同流动相(乙腈-0.1%磷酸、甲醇-0.1%磷酸、甲醇-0.2%磷酸、乙腈-0.1%甲酸、甲醇-0.1%甲酸)及紫外吸收波长(210、254、280、330 nm)对分离效果的影响。结果,以甲醇-0.1%磷酸洗脱时出峰数量、峰形和分离度最优,在210 nm 波长处检测效果最佳。

参考文献:

- [1] 鞠 强. 中国痤疮治疗指南 (2019 修订版) [J]. 临床皮肤 科杂志, 2019, 48(9): 583-588.
- [2] Mohsin N, Hernandez L E, Martin M R, et al. Acne treatment review and future perspectives [J]. Dermatol Ther, 2022, 35 (9); e15719.
- [3] Swallow M A, Fan R, Cohen J M, et al. Antibiotic resistance risk with oral tetracycline treatment of acne vulgaris [J]. Antibiotics (Basel), 2022, 11(8): 1032.
- [4] 郑玉梅, 孟若琳, 彭海悦, 等. 青少年痤疮面部皮肤微生物群落结构变化[J]. 微生物学通报, 2019, 46(12): 3414-3423.
- [5] Koizumi J, Nakase K, Hayashi N, et al. Multidrug-resistant Cutibacterium avidum isolated from patients with acne vulgaris and other infections [J]. J Glob Antimicrob Resist, 2022, 28:

- 151-157.
- [6] 王庆芬,杨育儒,沈秋莲,等. 枇芩颗粒剂体外抑制金黄色 葡萄球菌和痤疮丙酸杆菌的作用[J]. 中国现代应用药学,2015,32(12);1457-1460.
- [7] 赵玥瑛, 王昌海, 张泽康, 等. Box-Behnken 设计-响应面法 结合基准关联度和 AHP-熵权法优化经典名方小承气汤的提取工艺[J]. 中草药, 2022, 53(20); 6472-6480.
- [8] 马天翔, 顾志荣, 许爱霞, 等. 基于 OPLS 结合熵权 TOPSIS 法对不同产地锁阳的鉴别与综合质量评价[J]. 中草药, 2020, 51(12); 3284-3291.
- [9] 石 岩,魏 锋,马双成.关于主成分分析在中药和天然药物分析研究中应用的探讨[J].中国中药杂志,2018,43(14):3031-3035.
- [10] 李 运,张 霁,徐福荣,等. 多指标决策分析 TOPSIS 对三七的质量评价研究[J]. 中草药, 2017, 48(22): 4764-4771.
- [11] 涂正伟,刘洪斌,韩忠耀,等. 基于信息熵赋权法的正交试验优化番石榴叶总黄酮提取工艺[J]. 中草药, 2019, 50 (21): 5260-5265.
- [12] 杨诗宇,宋基正,杨山景,等.芦丁药理作用与新剂型的研究进展[J].中国现代应用药学,2022,39(10):1360-1370.
- [13] 王同慧, 凌保东. 抗细菌生物被膜感染中药的研究进展[J]. 中药药理与临床, 2021, 37(1): 260-264.
- [14] 杨新荣,窦 霞,李国峰,等. 柚皮苷药理作用及机制的研究进展[J]. 中草药, 2022, 53(10): 3226-3240.
- [15] Cui X D, Zhang J K, Sun Y W, et al. Synergistic antibacterial activity of baicalin and EDTA in combination with colistin against colistin-resistant Salmonella [J]. Poult Sci, 2022, 102 (2): 102346.
- [16] 张树蓉,赵宏苏,佟沫儒,等.牡丹皮化学成分、药理作用及其质量标志物(Q-Marker)的预测分析[J].中草药, 2022,53(16):5215-5224.
- [17] Li Y X, Yu H Y, Jin Y, et al. Verbascoside alleviates atopic dermatitis-like symptoms in mice via its potent anti-inflammatory effect [J]. Int Arch Allergy Immunol, 2018, 175(4): 220-230.
- [18] 邓桃妹,彭 灿,彭代银,等. 甘草化学成分和药理作用研究进展及质量标志物的探讨[J]. 中国中药杂志,2021,46 (11);2660-2676.